Green Technology Application for the Development of Low Carbon Cities (GTALCC)

City-wide GHG accounting

15 March 2021

Welcome back

15 March 2021

01 RE-CAP

Module B: Calculating GHG emissions

Module B: Calculating GHG emissions

02 MODULE C

Stationary energy

Module C: Stationary energy

Materials

Module C Stationary energy

01 Overview

Requirements

Categorising emissions

Scope 1	Scope 2	Scope 3	
Emissions from fuel combustion and fugitive emissions in the city	Emissions from the consumption of grid-supplied electricity, steam, heating and cooling in the city	Distribution losses from grid- supplied electricity, steam, heating and cooling in the city	
Scope 1 includes emissions from the combustion of fuels in buildings, industries, and from the conversion of primary energy sources in refineries and power plants located within the city boundary. Fossil resource exploration and refinement, including any offshore exploration that occurs within the city boundary, is also included in scope	Electricity consumption is typically the largest source of scope 2 emissions. It occurs when buildings and facilities in the city consume electricity from local, regional or national electric grids. Grid-distributed steam, heat and cooling rely on smaller-scale distribution infrastructure, but may still cross city boundaries.	Scope 3 emissions include transmission and distribution losses from the use of grid supplied electricity, steam, heating and cooling in a city. Other upstream emissions from electricity supply may be reported in Other Scope 3.	

Sub-sectors

	Sub-sector	Definition
l.1	Residential buildings	All emissions from energy use in households
I.2	Commercial and institutional buildings and facilities	All emissions from energy use in commercial buildings and facilities
I.2	Commercial and institutional buildings and facilities	All emissions from energy use in public buildings such as schools, hospitals, government offices, highway street lighting, and other public facilities
l.3	Manufacturing industries and construction	All emissions from energy use in industrial facilities and construction activities, except those included in energy industries sub-sector. This also includes combustion for the generation of electricity and heat for own use in these industries.
l.4	Energy industries	All emissions from energy production and energy use in energy industries
l.4.4	Energy generation supplied to the grid	All emissions from the generation of energy for grid-distributed electricity , steam, heat and cooling

Sub-sectors

	Sub-sector	Definition
l.5	Agriculture, forestry and fishing activities	All emissions from energy use in agriculture, forestry, and fishing activities
l.6	Non-specified sources	All remaining emissions from facilities producing or consuming energy not specified elsewhere
l.7	Fugitive emissions from coal	Includes all intentional and unintentional emissions from the extraction, processing, storage and transport of fuel in the city
l.8	Fugitive emissions from oil and gas systems	Fugitive emissions from all oil and natural gas activities occurring in the city. The primary sources of these emissions may include fugitive equipment leaks, evaporation losses, venting, flaring and accidental releases

Overview

Stationary energy sub-sectors	Scope 1	Scope 2	Scope 3	
Residential buildings	l.1.1	I.1.2 ←	l.1.3	- BASIC
Commercial and institutional buildings and facilities	l.2.1	1.2.2	I.1.2 ←	- BASIC+
Manufacturing industries and construction	l.3.1	1.3.2	l.3.3	
Energy industries	l.4.1	1.4.2	l.4.3	
Energy generation (electricity) supplied to the grid	1.4.4			
Agriculture, forestry, and fishing activities	l.5.1	1.5.2	l.5.3	
Non-specified sources	l.6.1	I.6.2	l.6.3	
Fugitive emissions from mining, processing, storage, and transportation of coal	l.7.1			
Fugitive emissions from oil and natural gas systems	l.8.1	Ť	↑	
	Territorial	Not applicable	I Other scope 3	

Exercise: Stationary energy

Activity	Sub-sector and scope
Air conditioner at home	l.1.2
Wood barbeque at a local food market	l.2.1
Diesel back-up generator used at school	l.2.1
Electricity used in a car factory	1.3.2
Streetlighting	1.2.2
Flaring at oil refinery	l.8.1
Coal used to generate electricity	1.4.4
Lights on at City hall	1.2.2

Data needs

	Sub-sector	Elec.	Gas	Kerosene	Diesel	Biomass	Oil	LPG
l.1	Residential buildings	Lighting, appliances, AC	Cooking, heating	Lighting, cooking	Generator	Cooking		Cooking
I.2	Commercial and institutional buildings and facilities	Lighting, appliances, AC	Cooking, heating		Generator			Cooking
l.3	Manufacturing industries and construction	>	~		~		~	~
l.4	Energy industries							
l.5	Agriculture, forestry, and fishing activities							
l.6	Non-specified sources							
l.7	Fugitive emissions from coal							
l.8	Fugitive emissions from oil and gas systems		~					

Module C Stationary energy

02

Fuel combustion

Residential, commercial and institutional buildings and facilities

Residential	Commercial	Institutional	Facilities
Houses	Retail outlets	Schools	Street lighting
Flats	Shopping complexes	Hospitals	Parking
	Office buildings	Police stations	Public recreation areas
		Government offices	Waste depot
		-	-

Note: **Common Reporting Framework** requires cities to report GHG emissions from commercial and institutional buildings and facilities **separately**. Use notation key IE if not possible

Multi-function uses for buildings & facilities

Multi-function uses for buildings and facilities

- Subdivide mixed use buildings based on square meters of a building (and "subdivide" the activity data and resulting emissions)
- Categorize buildings according to their designated usages
- > Categorize the entire building under one of the sub-categories and provide justification

Manufacturing industries and construction

This sub-sector includes energy use in manufacturing industries and construction activities

Fuel combustion occurs in stationary equipment, including: boilers, furnaces, burners, turbines, heaters, incinerators, engines etc

Where data are available, GHG emissions from relevant subcategories should be reported using the 13 sub-categories identified in the IPCC Guidelines

Sub-categories*	ISIC Classification	Description
iron and steel	ISIC Group 271 and Class 2731	Manufacture of primary iron and steel products, including the operation of blast furnaces, steel converters, rolling and finishing mills, and casting
Non-ferrous metals	ISIC Group 272 and Class 2732	Production, smelting, and refinement of precious metals and other non-ferrous metals from ore or scrap
Chemicals	ISIC Division 24	The manufacture of basic chemicals, fertilizer and nitrogen compounds, plastics, synthetic rubber, agro-chemical products, paints and coatings, pharmaceuticals, cleaning agents, synthetic fibers, and other chemical products
Pulp, paper and print	ISIC Divisions 21 and 22	Pulp, paper, paperboard, paper products; publishing and reproduction of recorded media
Food processing, beverages, and tobacco	ISIC Divisions 15 and 16	Production, processing, and preservation of food and food products, beverages, and tobacco products
Non-metallic minerals	ISIC Division 26	Manufacture and production of glass and glass products, ceramics, cernents, plasters, and stone
Transport equipment	ISIC Divisions 34 and 35	Motor vehicles, trailers, accessories and components, sea vessels, railway vehicles, aircraft and spacecraft, and cycles
Machinery	ISIC Divisions 28, 29, 30, 31, 32	Fabricated metal products, machinery and equipment, electrical machinery and apparatuses, communications equipment, and associated goods
Mining (excluding fuels) and quarrying	ISIC Divisions 13 and 14	Mining of iron, non-ferrous ores, salt, and other minerals; quartying of stone, sand, and clay
wood and wood products	ISIC Division 20	Sawmilling and planning of wood; the production of wood products and cork, straw, and other wood-based materials
Construction	ISIC Division 45	Site preparation, construction installation, building completion, and construction equipment $\label{eq:construction}$
Textile and leather	ISIC Division 17, 18, 19	Spinning, weaving, dyeing, of textiles and manufacture of apparel, tanning and manufacture of leather and footWear
Non-specific industries	Activities not included above	Any manufacturing industry/construction not included above, including water collection, treatment, supply; wastewater treatment and disposal; and waste collection, treatment, and disposal

Energy industries

Activity	Breakdown
Primary fuel production	Coal miningOil and gas extraction
Fuel processing and conversion	Crude oil to petroleum products in refineriesCoal to coke and coke oven gas in coke ovens
Energy production supplied to a grid	 Electricity generation (includes incineration of waste for energy) Combined heat and power generation (CHP) District heating / cooling Auxiliary energy use (energe used on site before distributed to grid)

GHG emissions from energy <u>used</u> shall be reported as I.4.1, I.4.2 and I.4.3

GHG emissions from energy generated and supplied to the grid shall be reported as I.4.4

Agriculture, forestry, and fishing activities

This sub-sector covers GHG emissions from direct fuel combustion in agricultural activities, including plant and animal cultivation, afforestation and reforestation activities, and fishery activities (e.g., fishing and aquaculture).

These emissions are typically from the operation of farm vehicles and machinery, generators to power lights, pumps, heaters, coolers, and others.

Sources of emissions	Reporting guidance
Off-road vehicles and machinery (stationary and mobile) used for agriculture, forestry, and fishing activities	Stationary energy (I.6)
On-road transportation to and from the locations of agriculture, forestry, and fishing activities	Transportation
Burning of agricultural residues	AFOLU
Enteric fermentation and manure management	AFOLU

Module C Stationary energy

03 Fugitive

emissions

Fugitive emissions

A small portion of emissions from the energy sector frequently arises as fugitive emissions, which typically occur during **extraction**, transformation, and transportation of primary fossil fuels.

Mining, processing, storage, and transportation of coal

The geological processes of coal formation produce CH_4 and CO_2 , collectively known as seam gas. It is trapped in the coal seam until the coal is exposed and broken during mining or post-mining operations, which can include handling, processing, and transportation of coal, low temperature oxidation of coal, and uncontrolled combustion of coal. At these points, the emitted gases are termed fugitive emissions.

Oil and natural gas systems

Fugitive emissions from oil and natural gas systems include GHG emissions from all operations to produce, collect, process or refine, and deliver natural gas and petroleum products to market. Specific sources include, but are not limited to, equipment leaks, evaporation and flashing losses, venting, flaring, incineration, and accidental releases

Module C Stationary energy

04

Grid-supplied energy consumption

Grid-supplied energy consumption

- Scope 2 represents all grid-supplied electricity, steam, heating and cooling consumed within the city boundary.
- Electricity is the most common form of grid-supplied energy, used in almost all homes, offices, other buildings, and outdoor lighting.
- Grid-supplied energy in the form of direct steam (heating) and/or chilled water (cooling) is typically provided by district energy systems, which may cover a smaller geographic area than electricity grids, which are typically regional.

- In all cases, using grid-supplied energy entails emissions produced at generation facilities off-site from the consumption facilities.
- Depending on the city and the structure of the grid, these energy generators can be located outside the geographic boundary at various locations tied to or exporting to the regional grid, or from generators located within the city boundary.

Location-based and market-based calculation methods

With regional grid networks, energy consumers can assess emissions from their consumption based on two methods: location-based or market-based method

Location-based method

A location-based method is based on average energy generation emission factors for defined locations, including local, sub-national or national boundaries. It yields a grid average emission factor representing the energy produced in a region, and allocates that to energy consumers in that region

Market-based method

The market-based method allocates emissions from energy generators to consumers based on "contractual instruments" such as renewable energy certificates or other contracts (e.g. green tariffs).

Cities shall use the location-based method for scope 2 calculations in the GPC, and may separately document emissions from the market-based method

Calculating grid-supplied electricity emissions

Activity data	 Real consumption data, disaggregated by building type / facility: Where such data is unavailable, but total community energy consumption data for buildings are available, apportion by total built space for each building type. Where data are only available for a few of the total number of energy utilities, determine the population served by real data to scale-up for total city-wide energy consumption. Alternately use built space as the scaling factor. Where data are only available for one building type, determine an energy enduse intensity figure by using built space of that building type, and use as a scaling factor with total built space for the other building types. Representative sample sets of real consumption data from surveys scaled up for total city-wide fuel consumption and based on total built space for each building type Modeled energy consumption data by building type / facility, adjusted for inventory-year consumption data by weather. Regional or national consumption data by weather.
Emissions factor	 Cities should use regional or sub-national grid average emissions factors. If these are not available, national electricity production emission factors may be used

Transmission and distribution losses

- During the transmission and distribution of electricity, steam, heating and cooling on a grid, some of the energy produced at the power station is lost during delivery to end consumers
- Emissions associated with these transmission and distribution losses are reported in scope 3 as part of out-ofboundary emissions associated with city activities (I.X.3)
- Calculating these emissions requires a grid loss factor, which is usually provided by local utility or government publications
- T&D = Activity data * grid loss factor * grid emission factor

Relationship between energy generation and energy consumption

- Cities may have energy generation facilities located inside the geographic boundary for the inventory
- In most instances a city cannot prove that its energy consumption is supplied by the resources located within the boundary
- While it is generally the case that a city's aggregate energy demand will be met with a set of local generation resources, cities cannot assume that their aggregate electricity consumption from regional electricity grids is met in full or in part by energy produced within the city boundary.

- This is not possible to guarantee due to fluctuating regional demand at any given moment, grid constraints, exports and other contractual arrangements
- Therefore, cities shall report scope 2 emissions from all grid-supplied energy consumed in the city, and separately report scope 1 emissions from all inboundary energy generation supplied to a regional / national grid (I.4.4)
- BASIC/BASIC+ reporting avoids double counting by excluding scope 1 emissions from energy generation supplied to the grid (I.4.4)

Energy generation (I.4.4)

GPC

- Used for Territorial total NOT City-induced (BASIC/BASIC+) total
- Only includes GHG emissions from energy produced within the geographic boundary of the city

CRF

- For information only and not added to total GHG emissions
- Measures GHG emissions from energy produced within the geographic boundary of the city AND facilities outside the city boundary but that can be *controlled or influenced* by the city
- *Should* disaggregate by electricity only, CHP and hot/cold generation

Module C Stationary energy

05 Case studies

Energy consumption (I.1.1 and I.1.2)

Cape Town

Bottom-up modelling based on estimated GJ / household and # of households using paraffin

Stockholm

Total energy use data from supplier disaggregated into sub-sectors based on floor area of buildings

London

Energy use from supplier by user

Energy generation (I.4.4)

London

Expert identified power stations within city and estimated capacity, fuel type and load factor

Mexico City

Activity data from company report submitted to Secretary of Environment. IPCC emission factors

Copenhagen

Owns energy utility and obtains energy generation and fuel type data direct from supplier

Fugitive emissions (I.8.1)

Washington DC

Default emission factor

Total gas consumption * IPCC emission factor

San Francisco

Proxy city

ata quality

 \bigcap

Total gas consumption * NYC emission factor * 0.8

New York City

Gas operator

Series of measurements, extrapolated across city
Data hacks

Sub-sector	Definition	
Real consumption data for each fuel type, disaggregated by sub-sector.	 This information is typically monitored at the point of fuel use or fuel sale, and should ideally be obtained from utility or fuel providers. Depending on the type of fuel dispensary, fuel sales may be for Stationary Energy sources or for mobile Transportation sources. Cities should ensure sales information is disaggregated between these two sectors. 	
A representative sample set of real consumption data from surveys.	 While surveying for fuel consumption for each sub-sector, determine the built space (i.e., square meters of office space and other building characteristics) of the surveyed buildings for scaling factor 	
Modeled energy consumption data	 Determine energy intensity, by building and/or facility type, expressed as energy used per square meter (e.g., GJ/m2/year) or per unit of output. 	
Incomplete or aggregate real consumption data	 Where fuel consumption data by sub-sector are unavailable, but data are available for total emissions, apportion by total built space for each sub-sector or building type. Where data are only available for a few of the total number of fuel suppliers, determine the population (or other indicators such as industrial output, floor space, etc.) served by real data to scale-up the partial data for total city-wide energy consumption. Where data are only available for one building type, determine a stationary combustion energy intensity figure by using built space of that building type, and use as a scaling factor with built space for the other building types. 	
Regional or national fuel consumption data scaled down using population or other indicators	 The rest of Section 6.3 applies this emissions calculation method to each energy sub-sector, identifying further sub-categories and clarifying where emissions from multifunctional buildings or related sectoral operations should be reported. 	

Module C Stationary energy

06 Practical

Practical

Practical

	Task	
1	 Identify all sources of GHG emissions from energy use in buildings across your city: What activities are taking place? Where are the emissions occurring? List them in Table 1 	10m
2	Determine what types of fuel are being used. Complete Table 2	10m
3	Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industries (I.3) sub-sectors using national fuel use data	30m
4	Record your data in Table 3, clearly documenting methodologies and data sources used. Where no GHG emissions occur or are deemed insignificant, use "NO". For scope 3 sources, use "NE".	10m
5	Consolidate the above information into Table 4 and identify what activity data and emission factors you will need to estimate GHG emissions, and where you will source this from	15m

Practical: Task #1

	Task	
1	 Identify all sources of GHG emissions from energy use in buildings across your city: What activities are taking place? Where are the emissions occurring? List them in Table 1 	10m
2	Determine what types of fuel are being used. Complete Table 2	10m
3	Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industries (I.3) sub-sectors using national fuel use data	30m
4	Record your data in Table 3, clearly documenting methodologies and data sources used. Where no GHG emissions occur or are deemed insignificant, use "NO". For scope 3 sources, use "NE".	10m
5	Consolidate the above information into Table 4 and identify what activity data and emission factors you will need to estimate GHG emissions, and where you will source this from	15m

Workbook: Task #1

GTALCC GHG Accounting - Participant handbook

Exercises		
Module B	Calculating GHG emissions	
	Reviewing an inventory	
Module C	Stationary energy	
Module D	Transportation	
Module E	Waste	
Module F	IPPU and AFOLU	

Tables		
Table 1	GHG emission sources	
Table 2	Fuel types	
Table 3	GPC	
Table 4	Action plan	

	Reference
GPC	
GWP	
Notation keys	
Checklist	

Workbook: Task #1

Table 1: GHG emission sources

Stationary: GHG emission sources

Sub-sector	Sources of GHG emissions
I.1 Residential	
I.2 Commercial	
I.2 Institutional	
I.3 Manufacturing	
I.4 Energy industries	
I.5 Agriculture	
I.6 Non-specific sources	
I.7 Fugitive emissions from coal	
I.8 Fugtive emissions from oil and gas	

Table 1: GHG emission sources

Sub-se	ector	lcon	Sources of GHG emissions
l.1	Residential buildings		Electricity for A/C
I.2	Commercial and institutional buildings and facilities		
I.3	Manufacturing industries and construction		Task 1:
l.4	Energy industries	N	Identify all sources of GHG emissions
l.5	Agriculture, forestry, and fishing activities		from energy use in buildings across
l.6	Non-specified sources		 What activities are taking place?
l.7	Fugitive emissions from coal	, , ,	Where are the emissions occurring?
l.8	Fugitive emissions from oil and gas systems		

Practical: Task #2

	Task	
1	 Identify all sources of GHG emissions from energy use in buildings across your city: What activities are taking place? Where are the emissions occurring? List them in Table 1 	10m
2	Determine what types of fuel are being used. Complete Table 2	10m
3	Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industries (I.3) sub-sectors using national fuel use data	30m
4	Record your data in Table 3, clearly documenting methodologies and data sources used. Where no GHG emissions occur or are deemed insignificant, use "NO". For scope 3 sources, use "NE".	10m
5	Consolidate the above information into Table 4 and identify what activity data and emission factors you will need to estimate GHG emissions, and where you will source this from	15m

Workbook: Task #2

GTALCC GHG Accounting - Participant handbook

Exercises		
Module B	Calculating GHG emissions	
	Reviewing an inventory	
Module C	Stationary energy	
Module D	Transportation	
Module E	Waste	
Module F	IPPU and AFOLU	

Tables		
Table 1	GHG emission sources	
Table 2	Fuel types	-
Table 3	GPC	
Table 4	Action plan	

	Reference
GPC	
GWP	
Notation keys	
Checklist	

Workbook: Task #2

Table 2: Fuel types

Stationary: Fuel types

Sub-sector	Electricity	Gas	LPG	Kerosene	Diesel	Petrol	Fuel oil	Other	Other
I.1 Residential									
I.2 Commercial									
I.2 Institutional									
I.3 Manufacturing									
I.4 Energy industries									
I.5 Agriculture									
I.6 Non-specific sources									
I.7 Fugitive emissions from coal									
I.8 Fugtive emissions from oil and gas									

Checklist: GPC sub-categories

Sub-sector		Sub-categories				
l.1	Residential buildings					
l.2	Commercial and institutional buildings and facilities	Commercial, Institutional, Streetlighting				
l.3	Manufacturing industries and construction	Manufacturing industries and construction (1.A.2), Iron and steel (1.A.2), Non-ferrous metals (1.A.2.b), Chemicals (1.A.2.c), Pulp, paper and print (1.A.2.d), Food processing, beverages and tobacco (1.A.2.e), Non-metallic minerals (1.A.2.f), Transport equipment (1.A.2.g), Machinery (1.A.2.h), Mining (excl. fuels) and quarrying (1.A.2.i), Wood and wood products (1.A.2.j), Construction (1.A.2.k), Textile and leather (1.A.2.l), Non-specified industry (1.A.2.m)				
l.4	Energy industries	Electricity generation (1.A.1.a.i), Combined heat and power generation (1.A.1.a.ii), Heat plants (1.A.1.a.iii), Petroleum refining (1.A.1.b), Manufacture of solid fuels (1.A.1.c.i), Other energy industries (1.A.1.c.ii)				
l.5	Agriculture, forestry, and fishing activities	Stationary (1.A.4.c.i), Off-road vehicles and other machinery (1.A.2.ii), Fishing (mobile combustion) (1.A.4.c.iii)				
I.6	Non-specified sources	Stationary (1.A.5.a), Mobile (1.A.5.b)				
l.7	Fugitive emissions from coal					
I.8	Fugitive emissions from oil and gas systems					

Table 2: Fuel types

Sub-sector		Elec.	Gas	LPG	Kerosene	Diesel	Petrol	Fuel oil
l.1	Residential buildings							
I.2	Commercial and institutional buildings and facilities							
I.3	Manufacturing industries and construction							
l.4	Energy industries							
l.5	Agriculture, forestry, and fishing activities							
l.6	Non-specified sources							
l.7	Fugitive emissions from coal							
l.8	Fugitive emissions from oil and gas systems							

Workbook: Task #2

GTALCC GHG Accounting - Participant handbook

Exercises						
Module B	Calculating GHG emissions					
	Reviewing an inventory					
Module C	Stationary energy					
Module D	Transportation					
Module E	Waste					
Module F	IPPU and AFOLU					

Tables					
Table 1	GHG emission sources				
Table 2	Fuel types				
Table 3	GPC				
Table 4	Action plan				

	Reference
GPC	
GWP	
Notation keys	
Checklist	

Checklist: Fuel types

	Scope 2			
Aviation gasoline	Compressed Natural Gas (CNG)	Landfill gas	Other Liquid BioFuels	Electricity
Biodiesels	Crude oil	Liquefied Natural Gas (LNG)	Petroleum coke	Electricity (CHP)
Biogasoline	Diesel oil	Liquefied Petroleum Gas (LPG)	Propane	Heating
Bitumen	E85	Lubricants	Residual fuel oil	Heating (CHP)
Butane	Ethanol	Methanol	Sewage sludge	Steam
Charcoal	Hydrogen	Motor gasoline (petrol)	Sludge gas	Steam (CHP)
Coal (Bituminous or Black coal)	Gas oil	Municipal wastes (all)	Town gas or city gas	Cooling
Coke	Jet gasoline	Naphtha	Wood or wood waste	Cooling (CHP)
Coking coal	Jet kerosene	Natural gas		
Coal (manufactured solid fuels)	Kerosene (paraffin)	Other biogas		

Table 2: Fuel types

Sub-se	ector	Elec.		Gas	LPG	Kerosene	Diesel	Petrol	Fuel oil
l.1	Residential buildings					Cooking		х	
I.2	Commercial and institutional buildings and facilities								
I.3	Manufacturing industries and construction								
l.4	Energy industries								
l.5	Agriculture, forestry, and fishing activities		lask 2:						
l.6	Non-specified sources	Determine what types of fuel are being used.						useu.	
l.7	Fugitive emissions from coal								
l.8	Fugitive emissions from oil and gas systems								

Practical: Task #3

	Task	
1	 Identify all sources of GHG emissions from energy use in buildings across your city: What activities are taking place? Where are the emissions occurring? List them in Table 1 	10m
2	Determine what types of fuel are being used. Complete Table 2	10m
3	Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industries (I.3) sub-sectors using national fuel use data	30m
4	Record your data in Table 3, clearly documenting methodologies and data sources used. Where no GHG emissions occur or are deemed insignificant, use "NO". For scope 3 sources, use "NE".	10m
5	Consolidate the above information into Table 4 and identify what activity data and emission factors you will need to estimate GHG emissions, and where you will source this from	15m

Workbook: Task #3

GTALCC GHG Accounting - Participant handbook

Exer	cises
Module B	Calculating GHG emissions
	Reviewing an inventory
Module C	Stationary energy
Module D	Transportation
Module E	Waste
Module F	IPPU and AFOLU

Tables					
Table 1	GHG emission sources				
Table 2	Fuel types				
Table 3	GPC				
Table 4	Action plan				

Reference
GPC
GWP
Notation keys
Checklist

Workbook: Task #3

Module C: Stationary Energy

1. Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industry (I.3)

1a. Identify activity data from data provided in Table 29 of the National Energy Balance 2017

I.1 Residential		I.2 Commercia	l & Institutional	I.3 Manufacturing industry		
ktoe	Convert to TJ	ktoe	Convert to TJ	ktoe	Convert to TJ	
	I.1 Res ktoe	I.1 Residential ktoe Convert to TJ	I.1 Residential I.2 Commercia ktoe Convert to TJ ktoe Image: Strategy of the s	I.1 Residential I.2 Commercial & Institutional ktoe Convert to TJ ktoe Convert to TJ Image: Im	I.1 Residential I.2 Commercial & Institutional I.3 Manufacture ktoe Convert to TJ ktoe Convert to TJ ktoe Image: Strate S	

Materials: Task 3

Estimate scope 1 and 2 GHG emissions for:

- Residential (I.1)
- Commercial & Institutional (I.2)
- Manufacturing industries (I.3)

Preferred sources of data:

- Local energy use data / estimates
- Floor area breakdown * energy intensities

Otherwise >> scale national energy use data

Scaling factor

What makes a good scaling factor for scaling down national energy data for **Residential**, **Commercial and Institutional** and **Manufacturing industries** sub-sectors?

- Population
- # of buildings
- GDP
- # of companies registered

Note, assumptions:

- No Energy industries (I.4)
- No Agriculture, forestry, and fishing activities (I.5)
- No Non-specified sources (I.6)
- No Fugitive emissions from coal activities (I.7)
- Fugitive emissions from gas (I.8) are negligible (ie. insignificant)

Identify fuel types

Identify fuel consumption data

If national data, identify suitable scaling factor

Scale data to city boundary

Identify emission factors

Estimate GHG emissions

National Energy Balance 2017: Table 29

TABLE 29: ENERGY BALANCE TABLE IN 2017 (KILO TONNES OF OIL EQUIVALENT)

COMMERCIAL ENERGY BALANCE FOR MALAYSIA 2017 (KILO TONNES OF OIL EQUIVALENT)									
	NATURAL		CRUDE	OTHERS	TOTAL	P	ETROLEUN	PRODUCT	s
ENERGY SOURCE	GAS	LNG	OIL (1/)	(2)	PETROLEUM	PETROL	DIESEL	FUEL OIL	LPG
PRIMARY SUPPLY									
1. Primary Production	71,140	0	32,807	0	0	0	0	0	0
2. Gas Flaring, Reinjection & Use	-6,058	0	0	0	0	0	0	0	0
3. Imports	5,183	1,815	10,135	76	13,252	5,149	5,167	226	441
4. Exports	-1,452	-29,428	-14,958	-13	-11,063	-282	-5,133	-617	-208
5. Bunkars	0	0	0	0	-390	0	-93	-297	0
6. Stock Change	0	0	-297	0	143	49	65	-11	21
7. Statistical Discrepancy	0	0	-216	0	0	0	0	0	0
8. Primary Supply	68,814	-27,613	27,471	63	1,941	4,917	6	-699	263
TRANSFORMATION									
9. Gas Plants									
9.1 LNG	-36,964	29,428	0	0	40	0	0	0	40
9.2 MDS	-1,140	0	0	0	509	0	138	0	0
9.3 GPP-LPG (384/)	-2,008	0	0	0	1,961	0	0	0	1,961
9.4 RST	1,815	-1,815	0	0	0	0	0	0	0
Subtotal	-38,296	27,613	0	0	2,510	0	138		2,001
10. Refineries	0	0	-27,252	-63	27,226	8,253	9,877	1,725	832
11. Power Stations & Self-Generation									
11.1 Hydro Stations	0	0	0	0	0	0	0	0	0
11.2 Thermal Stations	-11,872	0	0	0	-246	0	-147	-99	0
11.3 Self-Generation (5/)	-1,038	0	0	0	-226	0	-226	0	0
Subtotal	-12,910	0	0	0	-472	0	-372	-99	0
12. Losses & Own Use	-770	0	-219	0	-621	0	0	-29	0
13. Statistical Discrepancy	0	0	0	-0	177	267	-261	-319	429
14. Secondary Supply	-61,976	27,613	-27,471	-63	28,921	8,520	9,382	1,278	3,261
FINAL USE									
15. Residential	1	0	0	0	1,128	0	0	0	1,126
16 Commercial	25	0	0	0	270	0	22	5	244
17. Industrial	6,827	0	٥	0	2,687	182	1,750	569	184
18 Transport	148	0	0	0	23,473	13,190	7,062	1	0
19. Agriculture	0	0	0	0	36	0	31	5	0
20. Fishing	0	0	0	0	568	66	523	0	0
21. Non-Energy Use	9,837	0	0	0	2,680	0	0	0	1,961
22. Total Final Use	16,838	0	0	0	30,862	13,437	9,388	579	3,514
ELECTRICITY OUTPUT									
Main Activity Producer									
Gross Electricity Generation - GWh	58,201	0	0	0	890	0	688	202	0
Autoproducer									

TOTAL	ELECTRICITY	BIODIESEL	BIOGAS	BIOMASS	SOLAR	HYDRO POWER	COAL &	REFINERY GAS	NON Energy	ATF & AV GAS	KEROSENE
								·			
112,867	0	467	41	194	93	6,240	1,884	0	0	0	0
-6,058	0	0	0	0	0	0	0	0	0	0	0
49,642	1	0	0	0	0	0	19,181	0	1,064	1,205	0
-67,632	-97	-239	0	0	0	0	-382	0	-3,433	-1,330	-60
-390	0	0	0	0	0	0	0	0	-0	0	0
-64	0	32	0	0	0	0	58	0	12	3	4
-67	0	119	0	0	0	0	30	0	0	0	0
98,298	-96	379	41	194	93	6,240	20,771	0	-2,368	-122	-56
-7,496	0	0	0	0	0	0	0	0	0	0	0
-631	0	0	0	0	0	0	0	0	320	0	51
-46	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-8,173	0	0	0	0	0	0	0	0	320	0	61
-80	0	0	0	0	0	0	0	174	3,100	3,255	10
-3.031	2 309	0	0	0	0	-6.240	0	0	0	0	0
-20 203	11,066	0	-40	.52	.03	0	-18.967	0		0	0
-962	445	0	-1	-142	-0	0	0		0	0	0
-25.096	13.821	0	-41	-194	-03	-6240	-18.967			0	0
-2,067	-1,057	0	0	0	0	0	0	-174	-317	0	0
116	-61	0	0	0	0	0	0	0	-26	87	-0
-35,808	12,703	0	-41	-194	-93	-6,240	-18,967	0	3,076	3,342	61
3,739	2,610	0	0	0	0	0	0	0	0	0	3
4,067	3,762	0	0	0	0	0	0	0	0	0	0
17,463	6,145	0	0	0	0	0	1,804	0	0	0	3
24,039	39	379	0	0	0	0	0	0	0	3,220	0
85	50	0	0	0	0	0	0	0	0	0	0
568	0	0	0	0	0	0	0	0	0	0	0
12 517	0	0		0	0	0	0		710	0	0

3.220

0 0 0 0

0 0 0

719

0 1,804

0 68,866 26,841

0

5

330

.

185 142

0 426 12

379

0

0

12,607 62,489

0 155,456

0 5,178

Activity data

1/ Dody production Includes Construction, completing Perform and Haward Hydrocarbona. 20 Others Nation Hawa Doublin Strang Permonis of Hayandri Ligit Davad, Salag Brayncoma, Chulk Reakhaum & Michole Fall Reakhauj Which are Uland an Ruthnary Intaka. 30 OFH J Editariash Ligit Androlashi, La Condensidas, Filman, Ruthnar, Pergane Hamil Gao, Elaman Is Nati Included andre LPG production. 30 OFH J Editariash Ligit Androlashi, La Condensidas, Filman, Ruthnar, Nationa Hamil Gao, Elaman Is Nati Included andre LPG production. 31 OFH J Editariashi Ruthnary Ball Michole and Personal da Nation Facing van sucher Life Galarian. Themps Antonia Vander 31 Status and Pengenesis In Michole Statubashi and Pengenesis Statubashi Sagaby Instatity in Makayala. 2017. 1986 - Status and Pengenesis Chamanana, Statubashi of Elachtichy Sagaby Instatity in Makayala. 2017.

Source: NEB 2017

Biennial Update Report #3: Table 1.15

MALAYSIA THIRD BIENNIAL UPDATE REPORT TO THE UNFCCC Table 1.15: Key Statistics for 2005 and 2016

Year		2005	2016	
Latitude		0° 51' N -	- 7º 33' N	
Longitude		98° 01' E -	- 1 9º 30' E	
Area		330,34	15 km ²	
Coastline		8,84	0 km	
Mean daily temperature		26 –	28 °C	
Average annual rainfall		2,000 - 4	,000 mm	
Average daily direct sunlig	ht	6 ho	ours	
Forest Cover as % of total land	l area	53.9% (estimate)	55.5% (estimate)	
Population		26.0 million	31.6 million	Ponulation
Population density		79 per km ²	96 per km ²	ropulation
Female life expectancy		76.0 years	77.0 years	
Male life expectancy		71.4 years	72.1 years	
Age Profile		Below 15 years old - 30.9% 15 to 64 years old - 64.6% Above 65 years old - 4.5%	Below 15 years old - 24.5% 15 to 64 years old - 69.5% Above 65 years old - 6.0%	
Urbanisation Rate		66.5%	74.8%	
GDP (at 2010 constant price	es)	RM 659,639 million	RM 1,108,900 million	 GDP
GNI/capita (at 2010 constant pr	rices)	RM 24,739	RM 37,822	(:, :::::::::::::::::::::::::::::::::::
Primary Energy Supply		66,211 ktoe	93,396 ktoe	(IN MILLION KIVI)
Final Energy Demand		38,284 ktoe	57,218 ktoe	
Total Electricity Consumption	on	73,987 GWh	116,529 GWh	
Length of roads (Federal and S	State)	88,528 km	236,802 km	
Motor vehicle registration	1	14,816,407	27,613,259	
Annual Ridership on urban rail n in Greater Kuala Lumpur/ Klang (passenger journeys)	etwork Valley	157,475,402	210,498,247	
Public transport modal share in Kuala Lumpur/ Klang Valle	Greater y	-	20%	
Annual ridership on Stages Bus towns and cities) (passenger jou	ses (11 urneys)	-	46,915	
Solid Waste		-	33,130 tonnes/day (2012)	

Source: Malaysia Third Biennial Update Report to the UNFCCC

Kuala Lumpur GPC inventory

CITY	INVENTORY YEAR	POPULATION	GDP (MILLION USD)	AREA (KM2)
Kuala Lumpur (Malaysia)	2017	1,793,000	52,097	243
		Scope 1	Scope 2	Scope 3
Kuala Lumpur		15,548,891	8,969,058	576,105
Stationary		1,472,306	8,882,384	0
Residential buildings		182,833	2,365,581	0
Commercial and institutional building and	facilities	174,796	5,857,396	0
Manufacturing industries and construction	n	1,031,904	659,407	0
Energy industries		0	0	0
Agriculture, forestry and fishing activities		0	0	0
Non-specified sources		0	0	0
Fugitive emissions from mining, processi	ng, storage and transportation of coal	0	0	0
Fugitive emissions from oil and natural ga	as systems	82,773	0	0
Transport		13,875,481	86,674	0
On-road transportation		13,875,481	0	0
Railways		0	86,674	0
Waterborne navigation		0	0	0
Aviation		0	0	0
Off-road transportation		0	0	0
Waste		201,104	0	576,105
Solid waste disposal		0	0	572,481
Biological treatment of waste		0	0	1,355
Incineration and open burning		0	0	2,269
Wastewater treatment and discharge		201,104	0	0

Biennial Update Report #3: Table A2

Table A2: Summary of Emission Factors Used

MALAYSIA HIRD BIENNIAL UPDATE REPORT TO THE UNFCCC

				Emissio	n factors				
		CO ₂		N ₂ O	HECs	PECs	NE2	NOv	co
		(tC/TJ)	(kg/TJ)	(kg/TJ)	111 03	1103			
ENERGY	A 41 141								
TA Fuel Co	mbustion Activities								
1A1 Energy	y Industries								
1A1a	Electricity and Heat Production								
1A1ai	Electricity Generation								
	Diesel Oli Residual Fuel Oil	20.2	3	0.6					
	Sub-bituminous coal	26.2	1	1.5					
	Natural Gas	15.3	1	0.1					
1A1 b	Petroleum Refining								
	Crudel oil	20.0	3	0.6					
1A1 c	Manufacture of Solid Fuels and								
	Other Energy Industries	15.2	1	0.1					
1A2 Manut	Natural yas	tion		0.1					
	Coopline	19.0	2	0.6					
	Other kerosene	19.6	3	0.6					
	Diesel oil	20.2	3	0.6					
	Residual Fuel Oil	21.1	3	0.6					
	LPG Sub hitumineus esel	17.2	1	0.1					
	Natural gas	15.3	1	0.1					
1A3 Transp	port								
1A3 a	Civil Aviation								
1A3 aii	Domestic Aviation								
	Jet kerosene	19.5	0.5	2					
1A3 b	Road Transportation								
	Natural gas	15.3	92	3					
	Gasoline	18.0	33	3.2				-	
	Diesel Oil	20.2	3.9	3.9					
1A3 c	Railways								
	Diesel Oil	20.2	4.15	28.6					
1A3 d	Water-borne Navigation								
1A3 dii	Domestic Water-borne								
	Navigation								
	Diesel Oil Residual Eucl Oil	20.2	7	2					
1A4 Other	Sectors	21.1	1	2					
1A4 a	Commercial/Institutional								
	Diesel Oil	20.2	10	0.6				-	
	Residual Fuel Oil	21.1	10	0.6					
	LPG	17.2	5	0.1					
101 b	Natural Gas Residential	15.3	5	0.1					
IA4 D	Other keresene	10.6	10	0.6					
	LPG	17.2	5	0.1					
	Natural Gas	15.3	5	0.1					
1A4 c	Agriculture/Forestry/Fishing/Fish								
1 4 4 ci	Farms								
1744 01		20.2	10	0.6					
	Residual Fuel Oil	21.1	10	0.6					
1A4 cii	Off-road Vehicles and Other								
	Machinery								
1A4 ciii	Fishing (mobile combustion)		_						
	Diesel Oil Residual Fuel Oil	20.2	5	0.6					
	ricoloudi i uci Uli	41.1	J	0.0			 		-

Emission factors for **fossil fuels** (note CH_4 and N_2O not yet converted to CO_2e)

Source: Malaysia Third Biennial Update Report to the UNFCCC

2017 CDM electricity baseline: Table 11

Table 11: Combined Margin emission factor for 2017

Regions	Combined Margin (CM)	Emission factor	
	(tCO2/MWh)		
Peninsular Malaysia	0.585	 for electricity	
Sabah	0.525		
Sarawak	0.330	(note CO ₂ only	

What

about CH₄

and N₂O?

Activity data and emission factor conversion

GHG emissions (tCO₂e) = Activity data x emission factor

Activity data is in kilo tonnes of oil equivalent (**ktoe**)

Emission factors for CO₂ are in tonnes of carbon per terajoule (**tC/TJ**) or tonnes of carbon dioxide per Megawatt-hour (**tCO₂/MWh**)

Emission factors for CH₄ and N₂O are in kilograms per terajoule (kg/TJ)

Activity data and emission factor conversion

GHG emissions (tCO2e) = Activity data (TJ) x emission factor (tGHG/TJ) x GWP (tCO2e/tGHG)

- Convert activity data from ktoe to TJ
- Convert emission factors for CO₂ from tC/TJ to tCO₂/TJ
- Convert emission factors for CH₄ and N₂O from kg/TJ to t/TJ
- Convert tonnes of CH₄ and N₂O to CO₂e using GWP

Activity data and emission factor conversion

Electricity emission factor conversion

Convert emission factors for CO₂ from tCO₂/MWh to tCO₂/TJ $tCO_2/MWh > tCO_2/TJ$ • Divide by a conversion factor $tCO_2/MWh \qquad / \qquad 0.0036 \qquad \equiv \qquad tCO_2/TJ$

	Table	Steps
1a	Find activity data and convert to TJ	 Copy ktoe value from NEB 2017 Table 29 to workbook (columns C,E and G) Convert ktoe values to TJ by multiplying ktoe by 41.868 (columns: D,F and H)
1b	Identify scaling factor and scale data to city boundary	 Copy activity data in TJ from 1a (column: C) Identify suitable scaling factor for I.1, I.2 and I.3 : population or GDP (column: D) Copy national population and GDP values from BUR3 Table 1.15 (column: E) Record city population and GDP values (use Kuala Lumpur as default) (column: F) Determine ratio by dividing city value by national value (column: G) Multiple activity data by ratio to scale national data to city boundary (column: H)
1c	Find emission factors and convert to tGHG/TJ	 Copy emission factors per fuel type from BUR3 Table A2 (columns: C,E and G) Convert tC/TJ to tCO₂/TJ by multiplying by 44/12 (column: D) Convert kgCH₄/TJ and kgN₂O/TJ to tGHG/TJ by dividing by 1000 (columns: F and H) For electricity: convert tCO₂/MWh to tCO₂/TJ by dividing by 0.0036 (column: D)
1d	Estimate GHG emissions	 Multiply activity data (from 1b) by emission factor (1c) (columns: C,D and F) Apply GWP factors to CH₄ and N₂O (columns: E and G) Sum all CO₂, CH₄ and N₂O emissions (column: H)

	Table	Steps
1a	Find activity data and convert to TJ	
1b	Identify scaling factor and scale data to city boundary	Demonstration: Natural gas use in
1c	Find emission factors and convert to tGHG/TJ	(I.2)
1d	Estimate GHG emissions	

1. Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industry (I.3)

1a. Identify activity data from data provided in Table 29 of the National Energy Balance 2017

Fuel type	I.1 Residential		I.2 Commercia	I & Institutional	I.3 Manufacturing industry		
Puel type	ktoe	Convert to TJ	ktoe	Convert to TJ	ktoe	Convert to TJ	
Natural gas							
LPG							
Kerosene							
Petrol							
Diesel							
Fuel oil							
Coal & Coke							
Electrcity							
1a. Record activity data (NEB 2017)

Module C: Stationary Energy

fx

= 25

E10

1. Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industry (I.3)

1a. Identify activity data from data provided in Table 29 of the National Energy Balance 2017

Fuel type	I.1 Resi	idential	I.2 Commercia	& Institutional	I.3 Manufactu	Manufacturing industry	
i dei type	ktoe	Convert to TJ	ktoe	Convert to TJ	ktoe	Convert to TJ	
Natural gas			25				
LPG							
Kerosene							
Petrol							
Diesel							
Fuel oil							
Coal & Coke							
Electrcity							

1a. Convert ktoe to TJ

Module C: Stationary Energy

1. Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industry (I.3)

1a. Identify activity data from data provided in Table 29 of the National Energy Balance 2017

Eucl tripo	I.1 Res	idential	I.2 Commercia	& Institutional	I.3 Manufactu	iring industry
Puel type	ktoe	Convert to TJ	ktoe	Convert to TJ	ktoe	Convert to TJ
Natural gas			25	1047		
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1b. Copy activity data from 1a

fx

1b. Identify suitable scaling factor and scale data to city boundary

= F10

I.1 Residential

C34

Evel for a	National		Scaling factor					
Fuel type	Activity data (TJ)	Scaling factor	Scaling factor National value City value Ratio (city/national)					
Natural gas								
LPG								
Kerosene								
Electricity								

Fuel type	National		City			
ruei type	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)
Natural gas	1047					
LPG						
Diesel						

1b. Select scaling factor

1b. Identify suitable scaling factor and scale data to city boundary

I.1 Residential

Fuel free	National		City			
ruei type	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)
Natural gas						
LPG						
Kerosene						
Electricity						

Fuel type	National		Scaling factor					
	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)		
Natural gas	1047	GDP						
LPG								
Diesel								

1b. Copy national value (BUR3)

fx

1b. Identify suitable scaling factor and scale data to city boundary

= 1108900

I.1 Residential

E34

Fuel type	National		Scaling factor				
	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)	
Natural gas							
LPG							
Kerosene							
Electricity							

Fuel type	National		Scaling factor					
	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)		
Natural gas	1047	GDP	1108900					
LPG								
Diesel								

1b. Copy city value

1b. Identify suitable scaling factor and scale data to city boundary

I.1 Residential

Evel free	National		City			
Fuel type	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)
Natural gas						
LPG						
Kerosene						
Electricity						

Fuel type	National		Scaling factor				
	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)	
Natural gas	1047	GDP	1108900	217071			
LPG							
Diesel							

1b. Estimate ratio

1b. Apply ratio to scale activity data

	\frown					
H34 <i>fx</i>	= C34*G34					
1b. Identify suitable scaling	factor and scale data to city	/ beundary				
I.1 Residential						
Fuel type	National		Scaling	g factor	Define (altering the seal)	City
	Activity data (1J)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (IJ)
Natural gas						
LPG						
Kerosene						
Electricity						
I.2 Commercial & Institutiona	al					
Fuel type	National		Scaling	g factor		City
i dei type	Activity data (TJ)	Scaling factor	National value	City value	Ratio (city/national)	Activity data (TJ)
Natural gas	1047	GDP	1108900	217071	0.20	205
LPG						
Diesel						

1c. Copy emission factor: CO_2 (BUR3)

C56	fx	= 15.3
-----	----	--------

1c. Identify emission factors from data provided in Table A2 of the Third Biennial Update Report to the the UNFCCC

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas	15.3					
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1c. Copy emission factor: CH₄ (BUR3)

E56	fx	= 1			
-----	----	-----	--	--	--

1c. Identify emission factors from data provided in Table A2 of the Third Biennial Update Report to the the UNFCCC

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas	15.3		1			
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1c. Copy emission factor: N₂O (BUR3)

G56	fx	= 0.1

1c. Identify emission factors from data provided in Table A2 of the Third Biennial Update Report to the the UNFCCC

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas	15.3		1		0.1	
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1c. Convert tC/TJ to tCO₂/TJ

		\frown	
D56	fx	= C56*(44/12)	
1c Identify a	mission factor	s from data provided in Table	A2 of the Third Riennial Undate Report to the the UNECCC

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas	15.3	56.1	1		0.1	
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1c. Convert kgCH₄/TJ to tCH₄/TJ

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas	15.3	56.1	1	0.001	0.1	
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1c. Convert kgCH₄/TJ to tCH₄/TJ

H56 *fx* = G56/1000

1c. Identify emission factors from data provided in Table A2 of the Third Biennial Update Report to the UNFCCC

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas	15.3	56.1	1	0.001	0.1	0.0001
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

1c. Electricity emission factor

Fuel type	CO2 (tC/TJ)	Convert to tCOe/TJ	CH4 (kg/TJ)	Convert to tCH4/TJ	N2O (kg/TJ)	Convert to tN2O/TJ
Natural gas						
LPG						
Kerosene						
Petrol						
Diesel						
Fuel oil						
Coal & Coke						
Electrcity						

Data not available

1d: Multiply activity data (1b) by EF (1c)

I.1 Residential

Fuel type	CO2	CI	H4	N2O		
	tCO2e	tCH4	tCO2e	tN2O	tCO2e	tCO2e
Natural gas						
LPG						
Kerosene						
Electricity						

Fuel type	CO2	Cł	14	N2	Total	
	tCO2e	tCH4	tCO2e	tN2O	tCO2e	tCO2e
Natural gas	11495					
LPG						
Diesel						

1d: Multiply activity data (1b) by EF (1c)

D80 <i>fx</i>	= H34*F56						
1d. Calculate GHG emission I.1 Residential							
Fuel type	CO2	CH	H4 +CO20	N20	20	Total	
Natural gas	10026	LOI I I	10026	INZO	10026	10026	
LPG							
Kerosene							
Electricity							
1.2 Commercial & Institutional							

Fuel type	CO2	CH4		N2O		Total
ruei type	tCO2e	tCH4	tCO2e	tN2O	tCO2e	tCO2e
Natural gas	11495	0.2				
LPG						
Diesel						

1d: Multiply activity data (1b) by EF (1c)

F80 <i>fx</i>	= H34*H56						
1d. Calculate GHG emission							
Fuel type	CO2 tCO2e	CF tCH4	14 tCO2e	Ni tN2O	2O tCO2e	Total tCO2e	
Natural gas							
LPG							
Kerosene							
Electricity							
I.2 Commercial & Institutional							
	CO2	Cł	14	N	20	Total	

Eucl type	CO2	CI	H4	N2O I OTAI		lotal
Fuel type	tCO2e	tCH4	tCO2e	tN2O	tCO2e	tCO2e
Natural gas	11495	0.2		0.02		
LPG						
Diesel						

1d: Apply GWP factor to CH₄

1d: Apply GWP factor to N₂O

1d: Sum all CO₂, CH₄ and N₂O emissions

Task 3: Stationary energy

	Table	Steps
1a	Find activity data and convert to TJ	 Copy ktoe value from NEB 2017 Table 29 to workbook (columns C,E and G) Convert ktoe values to TJ by multiplying ktoe by 41.868 (columns: D,F and H)
1b	Identify scaling factor and scale data to city boundary	 Copy activity data in TJ from 1a (column: C) Identify suitable scaling factor for I.1, I.2 and I.3 : population or GDP (column: D) Copy national population and GDP values from BUR3 Table 1.15 (column: E) Record city population and GDP values (use Kuala Lumpur as default) (column: F) Determine ratio by dividing city value by national value (column: G) Multiple activity data by ratio to scale national data to city boundary (column: H)
1c	Find emission factors and convert to tGHG/TJ	 Copy emission factors per fuel type from BUR3 Table A2 (columns: C,E and G) Convert tC/TJ to tCO₂/TJ by multiplying by 44/12 (column: D) Convert kgCH₄/TJ and kgN₂O/TJ to tGHG/TJ by dividing by 1000 (columns: F and H) For electricity: convert tCO₂/MWh to tCO₂/TJ by dividing by 0.0036 (column: D)
1d	Estimate GHG emissions	 Multiply activity data (from 1b) by emission factor (1c) (columns: C,D and F) Apply GWP factors to CH₄ and N₂O (columns: E and G) Sum all CO₂, CH₄ and N₂O emissions (column: H)

Practical: Task #4

	Task	
1	 Identify all sources of GHG emissions from energy use in buildings across your city: What activities are taking place? Where are the emissions occurring? List them in Table 1 	10m
2	Determine what types of fuel are being used. Complete Table 2	10m
3	Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industries (I.3) sub-sectors using national fuel use data	30m
4	Record your data in Table 3, clearly documenting methodologies and data sources used. Where no GHG emissions occur or are deemed insignificant, use "NO". For scope 3 sources, use "NE".	10m
5	Consolidate the above information into Table 4 and identify what activity data and emission factors you will need to estimate GHG emissions, and where you will source this from	15m

Workbook: Task #4

GTALCC GHG Accounting - Participant handbook

Exercises				
Module B	Calculating GHG emissions			
	Reviewing an inventory			
Module C	Stationary energy			
Module D	Transportation			
Module E	Waste			
Module F	IPPU and AFOLU			

Tables			
Table 1	GHG emission sources		
Table 2	Fuel types		
Table 3	GPC		
Table 4	Action plan		

	Reference
GPC	
GWP	
Notation keys	
Checklist	

Workbook: Task #4

Figure 2 Sources and scopes covered by the GPC

Sectors and sub-sectors	Scope 1	Scope 2	Scope 3
STATIONARY ENERGY			
Residential buildings	4	4	4
Commercial and institutional buildings and facilities	1	4	4
Manufacturing industries and construction	1	1	4
Energy industries	1	1	1
Energy generation supplied to the grid	1		
Agriculture, forestry, and fishing activities	1	1	1
Non-specified sources	1	4	4
Fugitive emissions from mining, processing, storage, and transportation of coal	1		
Fugitive emissions from oil and natural gas systems	1		
TRANSPORTATION			
On-road	1	1	4
Railways	1	1	1
Waterborne navigation	1	1	4
Aviation	1	1	1
Off-road	1	1	
WASTE			
Disposal of solid waste generated in the city	1		1
Disposal of solid waste generated outside the city	1		
Biological treatment of waste generated in the city	1		1
Biological treatment of waste generated outside the city	1		
Incineration and open burning of waste generated in the city	1		1
Incineration and open burning of waste generated outside the city	1		
Wastewater generated in the city	1		1
Wastewater generated outside the city	1		
INDUSTRIAL PROCESSES AND PRODUCT USE (IPPU)			
Industrial processes	1		
Product use	1		
AGRICULTURE, FORESTRY AND OTHER LAND USE (AFOLU)			
Livestock	1		
Land	1		
Aggregate sources and non-CO ₂ emission sources on land	1		
OTHER SCOPE 3			
Other Scope 3			
✓ Sources covered by the GPC ■ Sources required for BA	SIC reporting		
+ Sources required for BASIC+ reporting Sources required for ter	ritorial total but no	t for BASIC/BASIC	+ reporting (<i>italics</i>)

Table 3: GPC table

Sub-sector		Scope 1	Scope 2	Scope 3
l.1	Residential buildings			
l.2	Commercial and institutional buildings and facilities			
I.3	Manufacturing industries and construction			
I.4	Energy industries			
1.4.4	Energy generation supplied to the grid			
I.5	Agriculture, forestry, and fishing activities			
I.6	Non-specified sources			
l.7	Fugitive emissions from coal			
I.8	Fugitive emissions from oil and natural gas systems			

Fugitive emissions (I.8)

CIRIS tool can be used to estimate fugitive emissions

Applies emission factors for CO_2 and CH_4 to gas consumption in a city

Assume fugitive emissions are negligible (ie insignificant). We will revisit and update this in Module G

Table 3: GPC table

Sub-sector		Scope 1	Scope 2	Scope 3	
l.1	Residential buildings	1,459,920 tCO2e	2,289,200 tCO2e	NE	
I.2	Commercial and institutional buildings and facilities				
I.3	Manufacturing industries and construction	Task 4:			
l.4	Energy industries	Record your data in Table 3, clearly			
1.4.4	Energy generation supplied to the grid	documenting methodologies and data			
l.5	Agriculture, forestry, and fishing activities	sources used. Where no GHG			
I.6	Non-specified sources	emissions occur or are deemed		emed	
l.7	Fugitive emissions from coal	insignificant, use "NO". For scope 3			
l.8	Fugitive emissions from oil and natural gas systems	sources, use "NE".			

Congratulations

Practical

	Task	
1	 Identify all sources of GHG emissions from energy use in buildings across your city: What activities are taking place? Where are the emissions occurring? List them in Table 1 	10m
2	Determine what types of fuel are being used. Complete Table 2	10m
3	Estimate scope 1 and 2 GHG emissions for Residential (I.1), Commercial & Institutional (I.2) and Manufacturing industries (I.3) sub-sectors using national fuel use data	30m
4	Record your data in Table 3, clearly documenting methodologies and data sources used. Where no GHG emissions occur or are deemed insignificant, use "NO". For scope 3 sources, use "NE".	10m
5	Consolidate the above information into Table 4 and identify what activity data and emission factors you will need to estimate GHG emissions, and where you will source this from	15m

Workbook: Task #4

GTALCC GHG Accounting - Participant handbook

Exercises				
Module B	Calculating GHG emissions			
	Reviewing an inventory			
Module C	Stationary energy			
Module D	Transportation			
Module E	Waste			
Module F	IPPU and AFOLU			

Tables			
Table 1	GHG emission sources		
Table 2	Fuel types		
Table 3	GPC		
Table 4	Action plan		

	Reference
GPC	
GWP	
Notation keys	
Checklist	

Workbook: Task #4

Table 4: Action plan

Stationary energy

Sub-sector	Data / action	Where from?	Action	Lead

Table 4: Action plan

GPC	Data	Where from?	Action	Lead
Residential buildings				
Commercial buildings and facilities				
Institutional buildings and facilities				
Manufacturing / construction				
Energy generation supplied to the grid				
Fugitive emissions from oil and gas				

Table 4: Action plan

GPC		Data	Where from?	Action	Lead		
Residential buildings	Obtain electricity use data		Ministry for the Environment	Request informal meeting to discuss what data they have	Mrs. Jones (Dept of Energy)		
Commercial buildings and facilities		Task 5:					
Institutional buildings and facilities		Consolidate t	Consolidate the above information into Table 4 and identify				
Manufacturing / construction		what activity of	what activity data and emission factors you will need to				
Energy generation supplied to the grid		estimate GHG emissions, and where you will source this from					
Fugitive emissions from oil and gas				1	-		

03 SUMMARY

Module C: Stationary energy

Module C: Stationary energy

The end

Next time: Transporation

