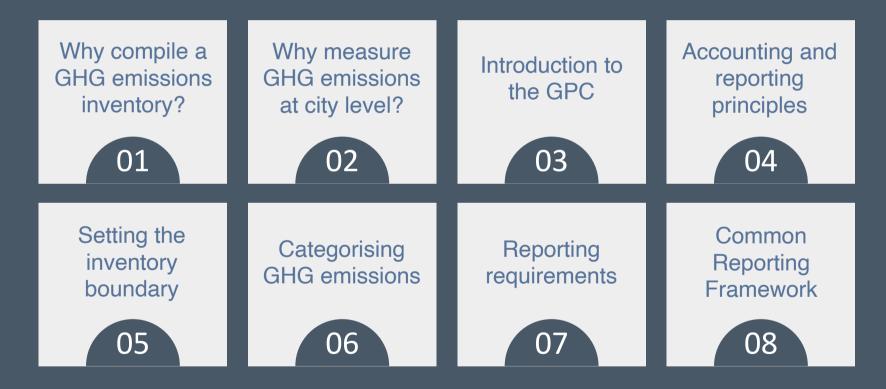
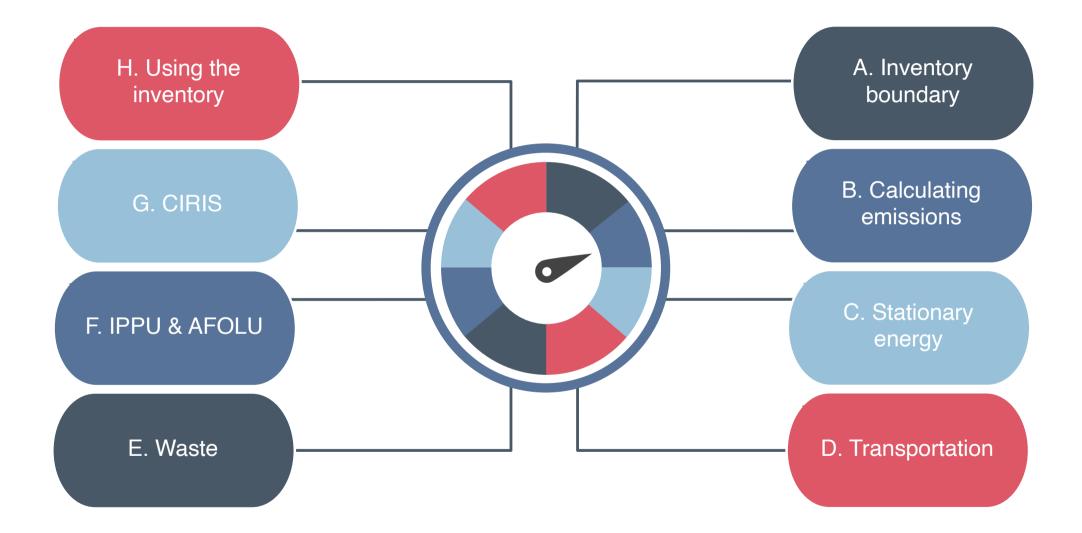
Green Technology Application for the Development of Low Carbon Cities (GTALCC)

City-wide GHG accounting

10 March 2021

Welcome back


10 March 2021



01 RE-CAP

Module A: Inventory boundary

Module A: Inventory boundary

02 MODULE B

Calculating GHG emissions

Module B: Calculating GHG emissions

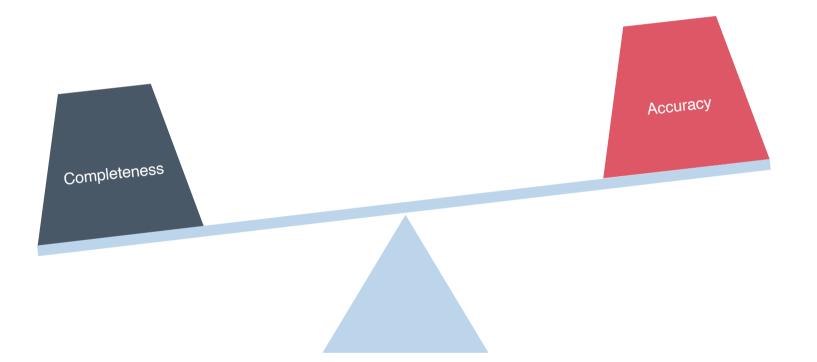
Workbook

GTALCC GHG Accounting - Participant handbook

Exercises		
Module B	Calculating GHG emissions	
	Reviewing an inventory	
Module C	Stationary energy	
Module D	Transportation	
Module E	Waste	
Module F	IPPU and AFOLU	

Tables		
Table 1	GHG emission sources	
Table 2	Fuel types	
Table 3	GPC	
Table 4	Action plan	

	Reference
GPC	
GWP	
Notation keys	
Checklist	


Module B Calculating GHG emissions

Calculating GHG emissions

01

1	Relevance	Prioritisation of activity data and reported emissions to the activities and priorities in the city	
2	Completeness	Ensuring all sectors and sources are included, or explained if not	
3	Consistency	Ensuring consistency in approach, boundaries, data sources, assumptions and methodologies, with the GPC, and within and between years	
4	Transparency	Clear documentation and disclosure of data sources, assumptions and methodologies	
5	Accuracy	Ensuring integrity of data, assumptions, and calculations, so results are neither under- or over-stated	

Balancing trade-offs between principles

Calculating GHG emissions

GHG emissions = Activity data x emission factor

Activity data

A quantitative measure of a level of activity that results in GHG emissions taking place during a given period of time

Reliable and robust sources preferable

Time- and geographically-specific

Alternative approaches to obtaining city data are valid if clearly documented Quantity of electricity used (kWh/year)

Volume of diesel sold at petrol stations (litres of fuel)

Amount of waste sent to landfill (tonnes of waste)

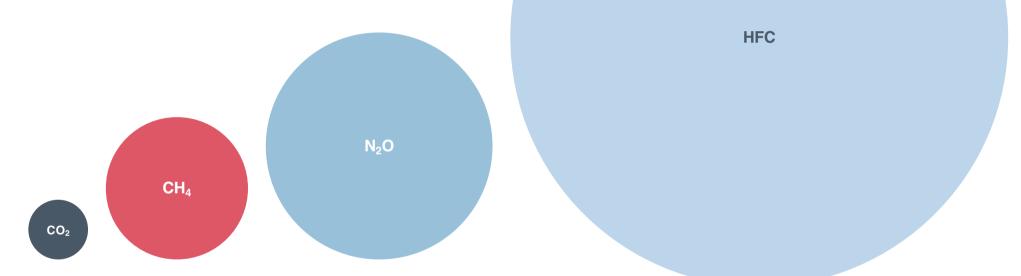
Emission factor

Emission factors convert activity data into a mass of GHG emissions

Emission factors represent the GHG emissions per unit of activity

Preference for geographicallyspecific factors from reliable and robust sources

IPCC default factors considered a robust alternative


tonnes of CO₂e produced per kWh of electricity consumed

tonnes of CO₂e produced per litre of diesel consumed

tonnes of CO₂e produced per kilometre travelled

Global Warming Potential

Not all GHGs are equal. Some have a greater impact on the climate than others

To compare their impact, we use Global Warming Potential (or GWP) factors. A higher GWP indicates a greater impact on the climate

Global Warming Potential

All GHG emissions data must be reported as metric tonnes of each GHG, as well as CO_2 equivalents (CO₂e)

CO₂e is a universal unit of measurement that accounts for the Global Warming Potential (GWP) when measuring and comparing ghg emissions from different gases

Individual GHGs should be converted into CO₂e by multiplying by the 100-year GWP coefficients in the latest version of the IPCC guidelines or the version used by the country's national inventory body

Which version does Malaysia use?

CO₂ equivalent (CO₂e)

= GHG x GWP

Assessment reports (AR)

GWP	CO ₂	CH₄	N ₂ O
2AR	1	21	310
3AR	1	23	296
4AR	1	25	298
5AR	1	28	265

Source: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf

Exercise: GWP

Activity	GWP	CO ₂ e
100,000 tonnes of CH ₄	2AR	2,800,000 tCO ₂ e
100,000 tonnes of CH ₄	5AR	2,100,000 tCO ₂ e
40 tonnes of CH ₄ and 10 tonnes of N ₂ O	4AR	3,980 tCO ₂ e
10 tonnes of CH ₄ and 40 tonnes of N ₂ O	3AR	12,070 tCO ₂ e
1,000,000 tonnes of CO ₂	3AR	1,000,000 tCO ₂ eq
2 tonnes of SF ₆ <i>(GWP=22,800)</i>	4AR	45,600 tCO ₂ e

$CO_2e = GHG \times GWP$

Units

CO2e is measured in (metric) tonnes

• 1 metric tonne = 1,000 kilos

Most inventories record emissions in **mega tonnes**, MtCO2e

• 1 mega tonne = 1 million tonnes

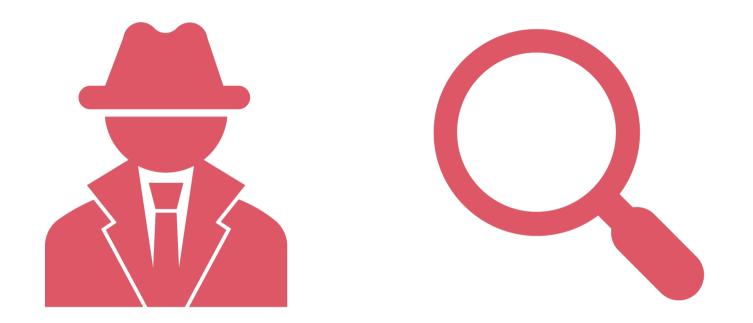
Prefix	Symbol	Multiplier		
giga	G	10 ⁹	1,000,000,000	
mega	М	10 ⁶	1,000,000	
kilo	k	10 ³	1,000	

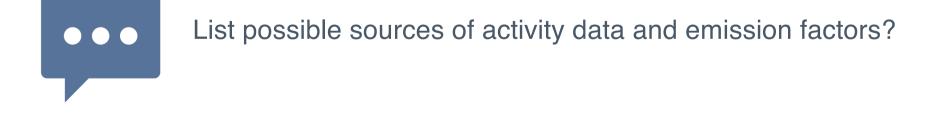
From kilo to mega > divide by 1,000 From giga to mega > multiply by 1,000 From gigagramme (Gg) to a mega tonne > ?

Units	Symbol	Description	
Kilowatt- hour	kWh	Unit of electricity	
Megawatt	MW	Capacity of energy plant	
Megajoule	MJ	Standard unit of energy	
tonnes of oil equivalent	toe	Normalised unit of energy (used for primary fuels)	

Stuck? Use a search engine

Note, (metric) tonne \neq ton




Module B Calculating GHG emissions

02

Sourcing data

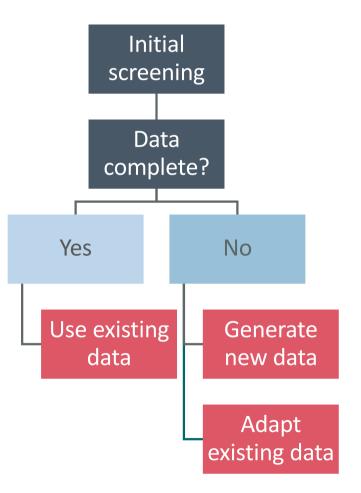
Sourcing data

Sourcing activity data

Source	Type of data
Government departments and statistics agencies	 Census data, city tax records A country's national greenhouse gas inventory report
International organisations	IPCC default assumptionsFAO statistics
Universities, research institutes and NGOs	 Local surveys, project reports Scientific and technical articles in environmental books, journals and reports
Local utilities and service providers	Waste contractor collection dataMetered consumption data
Sector experts / stakeholder groups / city government colleagues	Reports, studies, databasesTheir expertise
Online	Google's Environmental Insights ExplorerWikipedia
Yourself	Your expertise

Data hierarchy

Data quality	Examples			
High	City-specific real-consumption/generation data, by sub-sector			
Medium	Modelled recent activity data using robust assumptionsRecent surveys			
Low	 Highly modelled or uncertain activity data Incomplete or aggregated data Scaled regional or national data Proxy data from similar cities/countries 			


Selecting activity data

Data complete?

From reliable and robust sources

Time- and geographically-specific to the assessment boundary

Technology-specific to the activity being measured

Data collection process

Data collection process

Get familiar with the GPC

Set inventory boundaries for the city

Set reporting level

Identify reporting requirements for the corresponding reporting level

If the city has a previous inventory, identify differences and missing data

Identify data required by scope

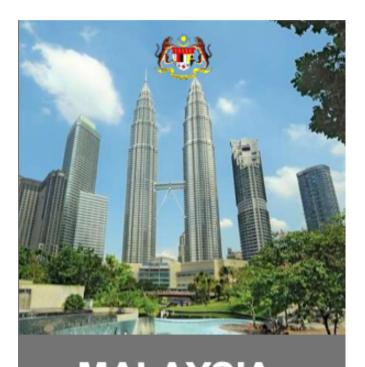
Identify data required by sector & sub sector

Identify calculation methodologies to use considering available data

Identify local and national data sources

Understand and adjust data to local situation

Biennial Update Reports (BURs)


Every two years non-Annex I Parties to the United nations Framework Convention on Climate Change need to submit a **Biennial Update Report** (BUR).

BURs contain updates of **national GHG inventories**, including a national inventory report and information on mitigation actions, needs and support received.

Malaysia <u>BUR1</u> – December 2015

Malaysia <u>BUR2</u> – 27/09/2018

Malaysia <u>BUR3</u> – 31/12/2020

MALAYSIA THIRD BIENNIAL UPDATE REPORT TO THE UNFCCC

Biennial Update Reports #3

Sectors:

- Energy
- Waste
- Industrial processes and product used (IPPU)
- Agriculture forestry and other land use (AFOLU)

The inventory also contains time series estimates from 1990 to 2016 for each sector

Gases: CO₂, CH₄, N₂O, HFCs, PFCs, SF₆ and NF₃

GWP from the IPCC 4th Assessment Report

GHG II	IVENTORY
2.1 Int	raduation
2.2 M	frodologies and Coverage
2.3 Sc	urces of Activity Data and Emission Factors
2.4 Qu	ality Assurance and Quality Control Amangements
2.5 AI	thising and Documentation
2.6 84	mmary of Greenhouse Gas Emissions and Removals for 2016
2.6.1	Reference and Sectoral Approaches for Energy Sector
2.6.2	Major Sources of Greenhouse Gas Emissions and Removals
2.6.3	Major Sources of Carbon Dioxide Emissions
2.6.4	Major Sources of Nethane Emissions
2.6.5	Major Sources of Nitrous Oxide Emissions
2.7 Ke	y Categories of Emissions and Uncertainty Assessment
2.7.1	Key Category Analysis
2.7.2	Uncertainty Analysis
2.8 Se	ctoral Time Series of Greenhouse Gas Emissions
2.8.1	Emissions from Energy Sector
2.8.2	Emissions from Industrial Processes and Product Use Sector
2.8.3	Emissions from Land Use, Land-Use Change and Forestry Sector
2.8.4	Emissions from Agriculture Sector
2.8.5	Emissions from Waste Sector
2.9 Gr	eenhouse Gas Emissions for the Years 1994, 2000, 2005, 2011, 2014 and 201645
2.10 Gr	eenhouse Gas Emission Intensity Indices
2.11 Gł	43 Inventory Ingrovement Plan
MITIGA	TION ACTIONS AND THEIR EFFECTS
3.1 Int	raduction
3.2 Se	mmary of Emissions Avoidance Achieved
3.3 De	tails of Mitigation Actions
3.3.1	Energy Sector
3.3.1.1	Renewable Energy (RE)
3.3.1.2	National Energy Efficiency Action Plan (NEEAP)
3.3.1.3	Green Building Rating Scheme
3.3.1.4	Urban Rail-based Public Transport
3.3.1.5	Energy Efficient Vehicles (EEVs)
	Palm oil-based fatty acid methyl ester (Biodiesel)
	Natural Gas Vehicles (NGVs)
	Oil and Gas Operations
	1

Biennial Update Reports #3

2.3 Sources of Activity Data and Emission Factors

The mapping of methods and emission factors used, summary of emission factors and activity data/information are shown in Table A1, A2 and A3 respectively.

Most of the activity data for the calculations of the GHG inventory were derived from annual scheduled national publications. Where required, additional activity data were collected from the same source of data. International data were used when data at national level were not available. Consistency check was also undertaken between Malaysia activity data reported at national level and international databases.

For the Energy sector, the data was sourced from the National Energy Balance. Additional information for the energy data is obtained from the Energy Commission (the custodian of the National Energy Balance). Additional activity data from other government agencies and the private sector were obtained through official requests by the Ministry of Environment and Water to those entities.

For the Waste sector, activity data was obtained from the Department of Statistics Malaysia, annual publications from MPOB, Malaysian Rubber Board (MRB) and the National Energy Balance. Additional information was sourced from the relevant government agencies and industries.

Biennial Update Reports #3

2.5 Archiving and Documentation

For each year of GHG inventory calculation, each of the sector's compilers generate a set of activity data, the database in the 2006 IPCC Guidelines software, external 2006 IPCC Guidelines spreadsheets and a sectoral report. Documentation of the procedures for the calculations and of the GHG Inventory team for each sector uses the United States Environmental Protection Agency (USEPA) templates.

For the archiving of the GHG Inventory, the 2006 IPCC software database and a flat file system for the external 2006 IPCC Guidelines spreadsheets were used for each of the five sectors (Energy, IPPU, Agriculture, LULUCF and Waste). This consists of three levels of files, which is the raw data file, the analysis files and the sectoral report file. The analysis files contain the 2006 IPCC Guidelines Software database and the 2006 IPCC Guidelines spreadsheets for each of the sectors.

The data files, 2006 IPCC Guidelines software database, analysis spreadsheets, reports and sectoral USEPA documentation templates are deposited with the GHG Inventory and Reporting Unit of the Ministry of Environment and Water. The agency heading each sectoral GHG inventory group also keeps a copy of their sectoral data files, analysis spreadsheets, reports and USEPA documentation templates as a second level backup.

BUR3: GHG emissions

Table 2.4: Emissions and Removals of Greenhouse Gas for each Sector in 2016

		Emissions/		
Secto	r	Removals (Gg CO ₂ eq.)	GWPs	CO₂ eq (Gg CO₂ eq.)
Energy (Reference Approach)	CO ₂	235,881.971	1	235,881.97
	CO ₂ (from Fuel Combustion)	222,510.481	1	222,510.48
Energy (Sectoral Approach)	CO ₂ (from Fugitive Emissions)	1,942.147	1	1,942.15
,	CH ₄	1,037.704	25	25,942.60
	N ₂ O	4.362	298	1,299.79
Sub-total				251,695.02
	CO ₂	20,807.763	1	20,807.76
	CH₄	13.523	25	338.08
	N ₂ O	0.237	298	70.70
	HFC-134a	0.4987728	1,430	713.25
Industrial Processes	HFC-23 (CHF ₃)	0.0029560	14,800	43.75
and Product Use	PFC-14 (CF ₄)	0.4889423	7,390	3,613.28
	PFC-116 (C ₂ F ₆)	0.1090460	12,200	1,330.36
	PFC-218 (C ₃ F ₈)	0.0036950	8,830	32.63
	SF ₆	0.0152705	22,800	348.17
	NF ₃	0.0029564	17,200	50.85
Sub-total				27,348.83
	CO ₂	531.828	1	531.83
AFOLU – Agriculture	CH₄	165.957	25	4,148.93
	N ₂ O	19.956	298	5,946.96
Sub-total				10,627.72
	CO ₂	17,753.214	1	17,753.21
AFOLU – LULUCF (Emissions)	CH₄	1.157	25	28.93
(Emissions)	N ₂ O	0.064	298	19.13
AFOLU – LULUCF (Removals)	CO ₂	-259,146.025	1	-259,146.03
Sub-total				-241,344.75
	CO ₂	31.060	1	31.06
Waste	CH₄	1,070.098	25	26,752.45
	N ₂ O	1.269	298	378.15
Sub-total			27,161.66	
Total Emissions (Without	LULUCF)			316,833.23
Total Emissions (With LU		t only)		334,634.51
Total Emissions (With LULUCF)				75,488.48

BUR3: GHG emissions

Table 2.5: Approach 1 Key Category Analysis of Greenhouse Gas Emissions for 2016, without Land Use, Land-Use Change and Forestry Emission

Sector	IPCC Category Code	IPCC Category Name	Gas	2016 estimate (Gg CO₂ eq)	Level Assessment (%)	Cumulative (%)
Energy	1.A.1	Energy Industries - Solid Fuels	CO ₂	68,189.15	21.52%	21.52%
Energy	1.A.3.b	Road Transportation	CO ₂	55,188.34	17.42%	38.94%
Energy	1.A.1	Energy Industries - Gaseous Fuels	CO ₂	52,070.82	16.43%	55.38%
Energy	1.B.2.b	Fugitive Emissions from Fuels - Natural Gas	CH₄	24,446.89	7.72%	63.09%
Waste	4.D.2	Industrial Wastewater Treatment and Discharge CH ₄ 13,927.93 4.40%		67.49%		
Waste	4.A	Solid Waste Disposal	CH₄	11,214.23	3.54%	71.03%
Energy	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	10,896.28	3.44%	74.47%
Energy	1.A.1	Energy Industries - Liquid Fuels	CO ₂	10,663.81	3.37%	77.83%
IPPU	2.A.1	Cement Production	CO ₂	9,125.90	2.88%	80.71%
Energy	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CO ₂	6,795.19	2.14%	82.86%
Energy	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CO ₂	6,164.27	1.95%	84.80%
Energy	1.A.3.d	Transport - Water- borne Navigation - Liquid Fuels	CO ₂	5,505.04	1.74%	86.54%
Energy	1.A.4	Other Sectors - Liquid Fuels	CO ₂	5,260.26	1.66%	88.20%
IPPU	2.A.4	Other Process Uses of Carbonates -	CO ₂	4,184.05	1.32%	89.52%

Sector	IPCC Category Code	IPCC Category Name	Gas	2016 estimate (Gg CO ₂ eq)	Level Assessment (%)	Cumulative (%)	
		Limestone and Dolomite					
AFOLU- Agriculture	3.C.4	Direct N ₂ O Emissions from Managed Soils	N ₂ O	4,052.61	1.28%	90.80%	
IPPU	2.B.8	Petrochemical and Carbon Black Production	CO ₂	3,583.40	1.13%	91.93%	
AFOLU- Agriculture	3.C.7	Rice Cultivations	CH₄	2,265.20	0.71%	92.65%	
IPPU	2.C.3	Aluminium Production	PFC- 14	2,246.56	0.71%	93.36%	
Energy	1.B.2.a	Fugitive Emissions from Fuel - Oil	CO ₂	1,846.14	0.58%	93.94%	
Waste	4.D.1	Domestic Wastewater Treatment and Discharge	iewater CH ₄ 1,608.12 0.51%		0.51%	94.45%	
IPPU	2.C.1	Iron and Steel Production	CO ₂	1,384.51	0.44%	94.88%	
AFOLU- Agriculture	3.A.1	Enteric Fermentation	CH₄	1,370.44	0.43%	95.31%	

Note: No electricity consumption. National government inventories do not report scope 2 emissions. Fossil fuels used for electricity generation are reported under Energy Industries.

BUR3: Key statistics

Table 1.15: Key Statistics for 2005 and 2016

Year	2005	2016			
Latitude	0° 51' N - 7° 33' N				
Longitude	98º 01 [°] E -	- 1 9º 30' E			
Area	330,34	15 km ²			
Coastline	8,84	0 km			
Mean daily temperature	26 – 28 °C				
Average annual rainfall	2,000 – 4,000 mm 6 hours				
Average daily direct sunlight	6 ho	ours			
Forest Cover as % of total land area	53.9% (estimate)	55.5% (estimate)			
Population	26.0 million	31.6 million			
Population density	79 per km ²	96 per km ²			
Female life expectancy	76.0 years	77.0 years			
Male life expectancy	71.4 years	72.1 years			
Age Profile	Below 15 years old - 30.9% 15 to 64 years old - 64.6% Above 65 years old - 4.5%	Below 15 years old - 24.5% 15 to 64 years old - 69.5% Above 65 years old - 6.0%			
Urbanisation Rate	66.5%	74.8%			
GDP (at 2010 constant prices)	RM 659,639 million	RM 1,108,900 million			
GNI/capita (at 2010 constant prices)	RM 24,739	RM 37,822			
Primary Energy Supply	66,211 ktoe	93,396 ktoe			
Final Energy Demand	38,284 ktoe	57,218 ktoe			
Total Electricity Consumption	73,987 GWh	116,529 GWh			
Length of roads (Federal and State)	88,528 km	236,802 km			
Motor vehicle registration	14,816,407	27,613,259			
Annual Ridership on urban rail network in Greater Kuala Lumpur/ Klang Valley (passenger journeys)	157,475,402	210,498,247			
Public transport modal share in Greater Kuala Lumpur/ Klang Valley	-	20%			
Annual ridership on Stages Buses (11 towns and cities) (passenger journeys)	-	46,915			
Solid Waste	-	33,130 tonnes/day (2012)			

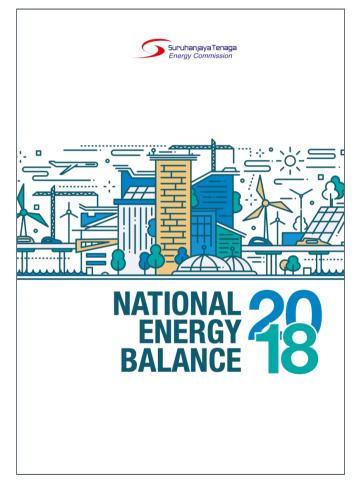

BUR3: Emission factors

Table A2: Summary of Emission Factors Used

		Emission factors								
		CO ₂	CH4	N ₂ O	HFCs	PFCs	SF6	NF3	NOx	СС
NERGY		(tC/TJ)	(kg/TJ)	(kg/TJ)	111 03		018	141-3	- HOX	
	ombustion Activities									
1A1 Energ 1A1a	y Industries									
1A1a 1A1ai	Electricity and Heat Production									
1A1ai	Electricity Generation Diesel oil	20.2	3	0.6						
	Diesei oli Residual Fuel Oil	20.2	3	0.6						
	Sub-bituminous coal	26.2	1	1.5						
	Natural Gas	15.3	1	0.1						
1A1 b	Petroleum Refining									
	Crudel oil	20.0	3	0.6						
1A1 c	Manufacture of Solid Fuels and Other Energy Industries									
	Natural gas	15.3	1	0.1						
1A2 Manu	facturing Industries and Construc	tion								
	Gasoline	18.9	3	0.6						
	Other kerosene	19.6	3	0.6						
	Diesel oil Residual Fuel Oil	20.2 21.1	3 3	0.6 0.6						
	LPG	17.2	1	0.1						
	Sub-bituminous coal	26.2	10	1.5						
1A3 Trans	Natural gas	15.3	1	0.1						
	•									
1A3 a 1A3 aii										
1A3 aii		40.5								
	Jet kerosene	19.5	0.5	2						
1A3 b	Road Transportation									
	Natural gas	15.3	92	3						
	Gasoline	18.9	33 3.9	3.2				1	1	1
1A3 c	Diesel Oil Railways	20.2	3.9	3.9						
1740 0	Diesel Oil	20.2	4.15	28.6						-
1A3 d	Water-borne Navigation	20.2	4.10	20.0						
1A3 dii	Domestic Water-borne									
i As uii	Navigation									
	Diesel Oil	20.2	7	2						
1A4 Other	Residual Fuel Oil	21.1	7	2						
1A4 Other 1A4 a										
1A4 a	Commercial/Institutional Diesel Oil	20.2	10	0.6						
	Diesel Oil Residual Fuel Oil	20.2 21.1	10 10	0.6						
	LPG	17.2	5	0.1						
	Natural Gas	15.3	5	0.1						
1A4 b	Residential									
	Other kerosene LPG	19.6 17.2	10 5	0.6 0.1						
	LPG Natural Gas	17.2	5	0.1						
1A4 c	Agriculture/Forestry/Fishing/Fish Farms									
1A4 ci	Stationary									
	Diesel Oil Residual Fuel Oil	20.2 21.1	10 10	0.6						
1A4 cii	Off-road Vehicles and Other	21.1	10	0.0						
1A4 ciii	Machinery Fishing (mobile combustion)									
TA4 CIII	Diesel Oil	20.2	5	0.6						
	Residual Fuel Oil	20.2 21.1	5	0.6						
	pecified									

National Energy Balance (NEB)

Every year, the Malaysia Energy Information Hub (MEIH), managed by the Energy Commission (EC) of Malaysia publishes the **National Energy Balance** (NEB) which provides data on the supply and consumption of energy in Malaysia.

Source: https://meih.st.gov.my/documents/10620/f2f4c39b-4748-4c5d-b90a-fc36ba880264

National Energy Balance (NEB)

			2018		
	10	20	3Q	4Q	Tot
GDP at current prices (RM million) *	346,708	353,821	367,778	379,145	1,44
GDP at 2015 prices (RM million) *	326,800	332,254	345,329	357,432	1,36
GNI at current prices (RM million) *	338,406	343,128	353,729	367,106	1,40
Population ('000 people) **	32,292	32,382	32,432	32,482	3
Primary Energy Supply (ktoe)	24,273	24,698	25,246	25,656	9
Final Energy Consumption (ktoe)	16,409	15,649	16,003	16,597	6
Electricity Consumption (ktoe)	3,176	3,323	3,355	3,300	1
Electricity Consumption (GWh)	36,912	38,615	38,987	38,352	15
Per Capita					
GDP at Current Prices (RM)*	42,496	43,705	45,360	46,690	4
Primary Energy Supply (toe)	0.752	0.763	0.777	0.788	
Final Energy Consumption (toe)	0.508	0.483	0.493	0.510	
Electricity Consumption (kWh)	1,143	1,192	1,202	1,181	
Energy Intensity					
Primary Energy Supply (toe/GDP at 2015 prices (RM million))	74.27	74.11	73.11	71.78	
Final Energy Consumption (toe/GDP at 2015 prices (RM million))	50.2	47.0	46.3	46.4	
Electricity Consumption (toe/GDP at 2015 prices (RM million))	9.7	10.0	9.7	9.2	
	0.113	0.116	0.113	0.107	

NATIONAL ENERGY BALANCE 2018

Peninsular Malaysia	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
GDP at Current Prices (RM million) *	516,321	571,945	651,915	610,691	684,057	751,734	806,569	849,891	925,232	975,581	1,038,585	1,131,564	1,193,1
GDP at 2015 Prices (RM million) *	628,560	667,980	701,990	688,320	744,624	784,737	833,245	873,486	928,517	975,581	1,020,869	1,079,978	1,137,7
Population ('000 people)	21,180	21,577	21,970	22,363	22,753	23,099	23,417	23,868	24,281	24,669	24,995	25,303	25,5
Final Energy Consumption (ktoe)	34,390	37,921	38,530	34,521	35,593	35,968	36,683	41,859	42,470	43,011	45,872	46,520	47,4
Electricity Consumption (ktoe)	6,669	7,030	7,307	7,567	8,145	8,427	8,791	9,108	9,315	9,531	10,026	10,004	10,3
Electricity Consumption (GWh)	77,504	81,710	84,924	87,950	94,666	97,939	102,174	105,861	108,259	110,770	116,529	116,272	120,6
Per Capita													
GDP at Current Prices (RM)*	24,378	26,508	29,674	27,308	30,064	32,544	34,444	35,608	38,105	39,547	41,551	44,721	46,6
Final Energy Consumption (toe)	1.624	1.757	1.754	1.544	1.564	1.557	1.567	1.754	1.749	1.744	1.835	1.839	1.8
Electricity Consumption (kWh)	3,659	3,787	3,866	3,933	4,161	4,240	4,363	4,435	4,459	4,490	4,662	4,595	4,7
Energy Inter	isity												
Final Energy Consumption (toe/GDP at 2015 prices (RM million))	54.7	56.8	54.9	50.2	47.8	45.8	44.0	47.9	45.7	44.1	44.9	43.1	4
Electricity Consumption (toe/GDP at 2015 prices (RM million))	10.6	10.5	10.4	11.0	10.9	10.7	10.6	10.4	10.0	9.8	9.8	9.3	1
Electricity Consumption (GWh/GDP at 2015 prices (RM million))	0.123	0.122	0.121	0.128	0.127	0.125	0.123	0.121	0.117	0.114	0.114	0.108	0.1
stat 3. GDF	e) e) data by Sta	ılar Malaysia ıte from 200	a including S	upra State (I were estim	Supra State	covers proc		ities that be	yond the cer	ntre of pred	ominant econ	nomic intere	st for any

Source: https://meih.st.gov.my/documents/10620/f2f4c39b-4748-4c5d-b90a-fc36ba880264

Other data sources

	Examples
•	Environmental Insights Explorer
•	GPC interactive dashboard

• UK emission factors database

Environmental Insights Explorer

Provides access to Google's mapping data and ML capabilities

- Buildings
- Transportation
- Rooftop solar potential

But ...

- · Does not cover all cities
- Requires access
- · May not calibrate well with other estimations

Transportation emissions

Show data for: 2019 -

Google estimate

7,220,000

Total tCO₂e per year

Up 7% from 2018 Google estimate

Source:

Google Maps uses aggregated location information from user trips to infer traffic, mode of travel, busyness, and total distances driven in a city. These are combined with an estimate of the types of vehicles and average fuel consumption of each mode.

Time period: Total trips for year 2019.

In-boundary emissions

Google estimate

2,640,000

Total combined # of trips

8,920,000,000

Total combined vehicle kilometers traveled

(i) :

Source: https://insights.sustainability.google

GPC interactive dashboard

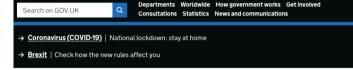
All GPC inventories from C40 cities

- GHG data only
- Allows for comparison

CITY		INVENTORY YEAR	POPULATION	GDP (I	MILLION USD)	AREA (KM2)
Kuala Lumpur (Malaysia) 201		2017	1,793,000	52	2,097	243
Select a city and a year:	Kuala Lun 30M	npur: emissions over years		Emissions by se	ctor	
City		25.09M		city Q sector Q	Inventory level Q	
Inventory Year	20M -				BASIC	BASIC+
Total emissions 🔻	Ze			Kuala Lumpur	25,094,052	25,094,052
	tCO2e			Stationary energy (total)	10,354,689	10,354,689
Clear Selections	10M -			Transportati (total)	13,962,154	13,962,154
Legend				Waste (total)	777,209	777,209
Legenu				IPPU (total)	-	0
Stationary	0-			AFOLU (total)	-	0
Transport		2027				
Waste						

	Scope 1	Scope 2	Scope 3
Kuala Lumpur	15,548,891	8,969,058	576,105
Stationary	1,472,306	8,882,384	(
Residential buildings	182,833	2,365,581	(
Commercial and institutional building and facilities	174,796	5,857,396	(
Manufacturing industries and construction	1,031,904	659,407	1
Energy industries	0	0	
Agriculture, forestry and fishing activities	0	0	
Non-specified sources	0	0	
Fugitive emissions from mining, processing, storage and transportation of coal	0	0	
Fugitive emissions from oil and natural gas systems	82,773	0	
Transport	13,875,481	86,674	
On-road transportation	13,875,481	0	
Railways	0	86,674	
Waterborne navigation	0	0	
Aviation	0	0	
Off-road transportation	0	0	
Waste	201,104	0	576,10
Solid waste disposal	0	0	572,48
Biological treatment of waste	0	0	1,35
Incineration and open burning	0	0	2,26
Wastewater treatment and discharge	201,104	0	

Source: https://www.c40knowledgehub.org/s/article/C40-cities-greenhouse-gas-emissions-interactive-dashboard?language=en_US


UK emission factors database

Comprehensive database of emission factors designed for UK based organisations, and for international organisations reporting on UK operations. Useful for

- Primary fuels
- Proxy data

Activity	Fuel	Unit	kg CO2e	kg CO ₂	kg CH4	kg N ₂ O
		tonnes	2542,04	2537,36	3,34	1,34
		litres	0,44486	0,44404	0,00058	0,00023
	CNG	kWh (Net CV)	0,20428	0,20390	0,00027	0,00011
		kWh (Gross CV)	0,18385	0,18351	0,00024	0,00010
		tonnes	2550,04	2545,37	3,34	1,34
	LNG	litres	1,15387	1,15175	0,00151	0,00060
	LNG	kWh (Net CV)	0,20492	0,20455	0,00027	0,00011
		kWh (Gross CV)	0,18443	0,18409	0,00024	0,00010
		tonnes	2936,86	2933,01	1,94	1,91
	LPG	litres	1,52260	1,52060	0,00101	0,00099
	LPG	kWh (Net CV)	0,23029	0,22999	0,00015	0,00015
Gaseous fuels		kWh (Gross CV)	0,21447	0,21419	0,00014	0,00014
Gaseous lueis		tonnes	2542,04	2537,36	3,34	1,34
	Natural gas	cubic metres	2,03053	2,02680	0,00267	0,00107
	Natural gas	kWh (Net CV)	0,20428	0,20390	0,00027	0,00011
		kWh (Gross CV)	0,18385	0,18351	0,00024	0,00010
		tonnes	2550,04	2545,37	3,34	1,34
	Natural gas (100% mineral blend)	cubic metres	2,03693	2,03320	0,00267	0,00107
	Interest presidential presidential	kWh (Net CV)	0,20492	0,20455	0,00027	0,00011
		kWh (Gross CV)	0,18443	0,18409	0,00024	0,00010
		tonnes	2610,26	2607,71	1,17	1,39
	Other petroleum gas	litres	0,95614	0,95521	0,00043	0,00051
	other petroleum gas	kWh (Net CV)	0,20164	0,20145	0,00009	0,00011
		kWh (Gross CV)	0,18551	0,18533	0,00008	0,00010

🕸 GOV.UK

Home > Environment > Climate change and energy > Energy and climate change: evidence and analysis

Research and analysis

Greenhouse gas reporting: conversion factors 2019

These emission conversion factors can be used to report on 2019 greenhouse gas emissions by UK based organisations of all sizes, and for international organisations reporting on UK operations.

(for most users) MS Excel Spreadsheet, 1,29MB

- This file may not be suitable for users of assistive technology.
- Request an accessible format.

Conversion factors 2019: full set (for advanced users) MS Excel Spreadsheet, 1.75MB

- This file may not be suitable for users of assistive technology.
- Request an accessible format.

Conversion factors 2019: flat file (for automatic processing only) MS Excel Spreadsheet, 2.72MB

This file may not be suitable for users of assistive technology. Request an accessible format.

Brexit

affect you

Related content

for company reporting Greenhouse gas reporting: conversion

factors 2017

Collection

factors 2018

Check how the new Brexit rules

Greenhouse gas reporting: conversion

Measuring and reporting environmental

Guidance on how to measure and report your greenhouse gas emissions

2012 greenhouse gas conversion factors

impacts: guidance for businesses

Source: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2019

Referencing data sources

Activity data from National Energy Balance 2017 report, Table 3.3	Expert judgement
Emission factors from Malaysia's Biennial Update Report 3 to the UNFCCC	IPCC emission factor (2006 IPCC Guidelines)
Email exchange with Ministry of Environment	Departmental reports
Proxy data from Jakarta's GPC inventory	Wikipedia (<i>provide URL</i>)

Module B Calculating GHG emissions

03

Dealing with data challenges

Good data in = good data out

List some of the typical data challenges cities commonly face

Good data in = good data out

Typical challenges faced by cities:

- Data providers give you 'what we have' not 'what you need'
- Judging the quality of data provided is it any good?
- Transparency of data provided understanding what you have been provided with and how it has been compiled
- Timescales to obtain data
- 'Knocking on doors' with no progress
- Not knowing the right people to ask
- Data providers won't share (information is power)
- Cost of data / payments for data
- Simple lack of data alternative approaches needed

Incomplete datasets are not uncommon

"We have data, but it's not broken down by vehicle type" "The data covers neighbouring cities in the region as well?"

"The transport team tell me we don't collect the data I need" "We last carried out a transport survey in 2010"

Examples of incomplete data

Gaps in periodic data

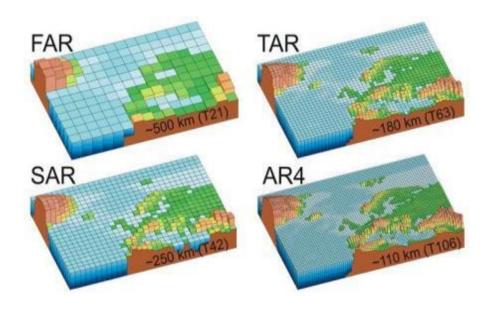
Recent data not yet available

Confidentiality

Only country-level data available

Data do not align with city boundary

Data only available for part of city or part of year


Making the most of limited data

Aim for completeness over accuracy: start with whatever data you have and improve over time

Do not be afraid to use data that is incomplete – e.g. has gaps, is old or does not provide total coverage – as long as you understand the issues

Many techniques exist to make the data meet inventory requirements

Data availability, range, quality, accuracy often improve over time

Source: www.wmo.int/pages/themes/climate/climate_models.php

Data-filling techniques

Approach	Applicability	Comments
Proxy data (Scaling factor)	Missing data is strongly correlated with proxy data	Should test multiple potential proxy data variables
Overlap	Consistent relationship between two datasets	Only use when overlap shows pattern that appears reliable
Interpolation	For periodic data or gap in time series	Linear or non-linear interpolation. Only use where data shows steady trend
Extrapolation	Beginning or the end of the time series is missing data	Only use where trend is steady and likely to be reliable. Should only be used for a very few years

Data-filling techniques

Approach	
Proxy data (Scaling factor)	
Overlap	
Interpolation	
Extrapolation	

Proxy data can be useful and relevant where data for the inventory year or other aspect of the inventory boundary is unavailable or incomplete

The proxy data approach uses a scaling factor which represents the ratio between the available data and the required inventory data and should reflect a high degree of correlation to variations in the data

Inventory data = available data * scaling factor

Where scaling factor = Proxy data inventory data (e.g. population city)

Proxy data available data (e.g. population country)

Population is one of the most common factors used to scale data because, in the absence of major technological and behavioural changes, the number of people is a key driver of GHG emissions, particularly in the residential sector.

Other proxy data may include:

- GDP/ output data
- Employment statistics (by sector)
- Household expenditure
- Number of buildings / floor are of buildings
- Land area

Missing electricity data for inventory year but have data for previous years

Target	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
MWh electricity				8762					7891	?

Step 1: Identify proxy variable (population) and record data

Target	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
MWh electricity				8762					7891	?
			-		-	-	-			
Proxy	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Population (1,000)	4.16	4.20	4.19	4.21	4.22	4.25	4.27	4.29	4.32	4.31

Note, there has to be plausible relationship between the target and proxy variable

Step 2: Calculate scaling factor (2016 = 7891 / 4.32 = 1826.6)

Target	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
MWh electricity				8762					7891	?

Proxy	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Population (1,000)	4.16	4.20	4.19	4.21	4.22	4.25	4.27	4.29	4.32	4.31

Scaling factor (MWh / 1000 people)	2081.2		1826.6
------------------------------------	--------	--	--------

Step 3: Back fill target data (2017 = 4.31 * 1826.6 = 7873)

Target	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
MWh electricity				8762					7891	7873

Proxy	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Population (1,000)	4.16	4.20	4.19	4.21	4.22	4.25	4.27	4.29	4.32	4.31

Scaling factor (MWh / 1000 people)		20	081.2			1826.6	1826.6

Proxy data approach: examples

Wellington Region, New Zealand

- Consumption of coal, wood and biomass estimated using national average emission figures and allocated on a population basis
- Wastewater volumes estimated based on population figures and average New Zealand wastewater generation per person

Johannesburg, South Africa

 Number of households using coal for cooking and heating was based on regional community survey for 2011. The same proportion was applied to Johannesburg for 2007

Estimate GHG emissions from waste sent to landfill for your city using the **proxy data** approach:

- 1. Find a good proxy city with data
- 2. Identify a suitable scaling factor

3. Multiply the the proxy data by the scaling factor

Assume Kuala Lumpur makes a good proxy city. Use the data on the next slide from Kuala Lumpur's 2017 GPC inventory to estimate GHG emissions from (1) solid waste disposal, (2) biological treatment of waste, (3) incineration / open burning and (4) wastewater treatment for your city

CITY	INVENTORY YEAR	POPULATION	GDP (MILLION USD)	AREA (KM2)
Kuala Lumpur (Malaysia)	2017	1,793,000	52,097	243
		Scope 1	Scope 2	Scope 3
Kuala Lumpur		15,548,891	8,969,058	576,105
Stationary		1,472,306	8,882,384	0
Residential buildings		182,833	2,365,581	0
Commercial and institutional building and	facilities	174,796	5,857,396	0
Manufacturing industries and construction	n	1,031,904	659,407	0
Energy industries		0	0	0
Agriculture, forestry and fishing activities		0	0	0
Non-specified sources		0	0	0
Fugitive emissions from mining, processir	ng, storage and transportation of coal	0	0	0
Fugitive emissions from oil and natural ga	as systems	82,773	0	0
Transport		13,875,481	86,674	0
On-road transportation		13,875,481	0	0
Railways		0	86,674	0
Waterborne navigation		0	0	0
Aviation		0	0	0
Off-road transportation		0	0	0
Waste		201,104	0	576,105
Solid waste disposal		0	0	572,481
Biological treatment of waste		0	0	1,355
Incineration and open burning		0	0	2,269
Wastewater treatment and discharge		201,104	0	0

CITY	INVENTORY YEAR	POPULATION	GDP (MILLION USD)	AREA (KM2)	Pot
		1,793,000	52,097	243	scal fact
				Scope 3	
Kuala Lumpur		15,548,891		576,105	
		1,472,306	8,882,384	0	
			2,365,581	0	
			Your population	n / GDP / Area _o	
GHG from solid waste disp	osal = GHG from soli	id waste disposal ^s in [®] KI	*650,407		
Energy industries		0		n / GDP / Area	
			KL population	T/ GDP / Area	
				0	
				0	
				0	
Transport		13,875,481	86,674	0	
				0	
				0	
				0	
				0	
				0	
Waste		201,104	0	576,105	
Solid waste disposal		0	0	572,481	D
Biological treatment of waste		0	0	1,355	Prox
Incineration and open burning		0	0	2,269	data
Wastewater treatment and discharge		201,104	0	0	

Workbook

GTALCC GHG Accounting - Participant handbook

Exercises							
Module B	Calculating GHG emissions						
	Reviewing an inventory						
Module C	Stationary energy						
Module D	Transportation						
Module E	Waste						
Module F	IPPU and AFOLU						

Tables						
Table 1	GHG emission sources					
Table 2	Fuel types					
Table 3	GPC					
Table 4	Action plan					

Refere	nce
GPC	
GWP	
Notation keys	
Checklist	

Workbook

Module B: Calculating GHG emissions

1. Estimate GHG emissions for all waste sub-sectors for your city by scaling reported data from Kuala Lumpur's 2017 GPC inventory

Solid waste disposal		Biological treatment		Incine	ration	Wastewater	
KL: tonnes of CO2e	572.481	KL: tonnes of CO2e	1.355	KL: tonnes of CO2e	2.269	KL: tonnes of CO2e	201.104
KL: population		KL: population		KL: population		KL: population	
City: population		City: population		City: population		City: population	
Tonnes of CO2e		Tonnes of CO2e		Tonnes of CO2e		Tonnes of CO2e	

GTALCC City	Population	Solid waste disposal	Biological treatment	Incineration / open burning	Wastewater treatment
Perbadanan Putrajaya					
Hang Tuah Java					
Petaling Jaya					
Sepang					
Iskandar RDA					
Another city					

GHG from solid waste disposal =

Your population (?)

GHG from solid waste disposal in KL (? tCO2e) *

KL population (?)

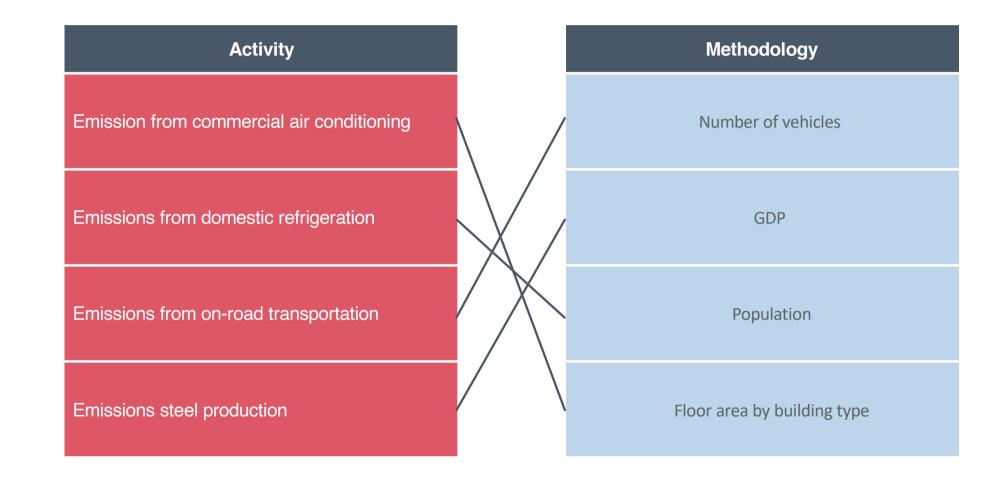
= ? tCO2e

GTALCC City	Population	Solid waste disposal	Biological treatment	Incineration / open burning	Wastewater treatment
Perbadanan Putrajaya					
Hang Tuah Java					
Petaling Jaya					
Sepang					
Iskandar RDA					
Another city	1,000,000	319,287	756	1,265	112,161

GHG from solid waste disposal =

GHG from solid waste disposal in KL (572,481 tCO2e) * -

Your population (1,000,000)

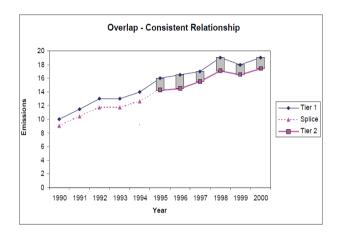

= 319,287 tCO2e

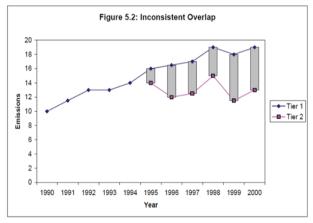
KL population (1,793,000)

Congratulations

Exercise: Scaling factor

Data-filling techniques


Approach	
Proxy data (Scaling factor)	
Overlap	
Interpolation	
Extrapolation	


Assessment of comparability of two datasets over a time series

Looking for consistent overlap or difference

Preferably for multiple years to avoid bias

Can either use comparable dataset or recalculate existing data on the basis of consistency

Source: 2006 IPCCC Guidelines for National Greenhouse Gas Inventories: Chapter 5 – Time Series Consistency

Step 1: Record data

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Industry A	5000	4900	4800	5000	4900	4800	4200	4100	4000	4000
Industry B	4790	4513	4320	4500	4410	4598	4035	?	?	?

Step 2: Calculate ratios between datasets (= Industry A / Industry B)

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Industry A	5000	4900	4800	5000	4900	4800	4200	4100	4000	4000
Industry B	4790	4513	4320	4500	4410	4598	4035	?	?	?
			-	-						

Ratio	0.96	0.92	0.90	0.90	0.90	0.96	0.96			
-------	------	------	------	------	------	------	------	--	--	--

Step 3: Determine average ratio

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Industry A	5000	4900	4800	5000	4900	4800	4200	4100	4000	4000
Industry B	4790	4513	4320	4500	4410	4598	4035	?	?	?

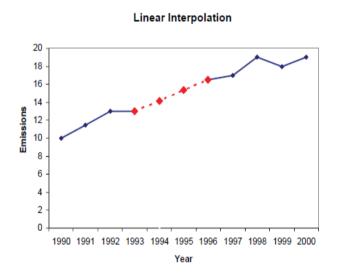
Ratio	0.96	0.92	0.90	0.90	0.90	0.96	0.96	0.93	0.93	0.93
-------	------	------	------	------	------	------	------	------	------	------

(0.96+0.92+0.90+0.90+0.96+0.96) / 7 = 0.93

Step 4: Use average ratio to estimate missing data

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Industry A	5000	4900	4800	5000	4900	4800	4200	4100	4000	4000
Industry B	4790	4513	4320	4500	4410	4598	4035	3806	3712	3713
			-	-	-	-	-			
Ratio	0.96	0.92	0.90	0.90	0.90	0.96	0.96	0.93	0.93	0.93

Data-filling techniques


Approach	
Proxy data (Scaling factor)	
Overlap	
Interpolation	
Extrapolation	

Interpolation makes use of trends in existing data to fill gaps during a time series between two or more data points e.g. periodic survey data

Simplest form of interpolation is linear by drawing a line between the edges of the gap

There are more sophisticated methods for interpolation that can accommodate more subtle features in trend

To increase confidence, compare interpolated data with proxy data

Source: 2006 IPCCC Guidelines for National Greenhouse Gas Inventories: Chapter 5 – Time Series Consistency

Step 1: Record and map data to determine if interpolation is suitable

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Waste sent to landfill (tonnes)	4,030	4,135	4,235	?	?	?	4,655	4,770	4,880	4,975

Step 2: Calculate difference between edges of gap

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Waste sent to landfill (tonnes)	4,030	4,135	4,235	?	?	?	4,655	4,770	4,880	4,975

Difference between edges of gap

4,655 - 4,235 = 420

Step 3: Calculate length of gap

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Waste sent to landfill (tonnes)	4,030	4,135	4,235	?	?	?	4,655	4,770	4,880	4,975

Difference between edges of gap

4,655 - 4,235 = 420

Length of gap

2007 - 2003 = 4 years

Step 4: Calculate average change per year

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Waste sent to landfill (tonnes)	4,030	4,135	4,235	?	?	?	4,655	4,770	4,880	4,975

Difference	hotwoon of		aon
Difference	between ec	iges of	gap

Length of gap

Average change per year

4,655 - 4,235 = 420

2007 - 2003 = 4 years

420 / 4 = 105

Step 5: Fill gap year(s) by adding the average change per year

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Waste sent to landfill (tonnes)	4,030	4,135	4,235	4,340	4,445	4,550	4,655	4,770	4,880	4,975

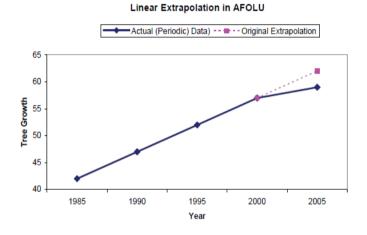
Difference between edges of gap
Length of gap
Average change per year
Fill gap

4,655 - 4,235 = 420

2010 - 2014 = 4 years

420 / 4 = 105

4235	4340	4445
+105	+105	+105


Data-filling techniques

Approach	
Proxy data (Scaling factor)	
Overlap	
Interpolation	
Extrapolation	

Extrapolation makes use of trends in existing data to extend a time series backwards or forwards

Ideally isn't used for an extended period of time (the longer the period, the greater the uncertainty), although an uncertain estimate is better than no estimate

Simplest form of extrapolation is linear; the gap at the end of a timeseries is filled by extending the line of best fit from the end of the known time-series

Source: 2006 IPCCC Guidelines for National Greenhouse Gas Inventories: Chapter 5 – Time Series Consistency

Step 1: Record and map data to determine if extrapolation is suitable

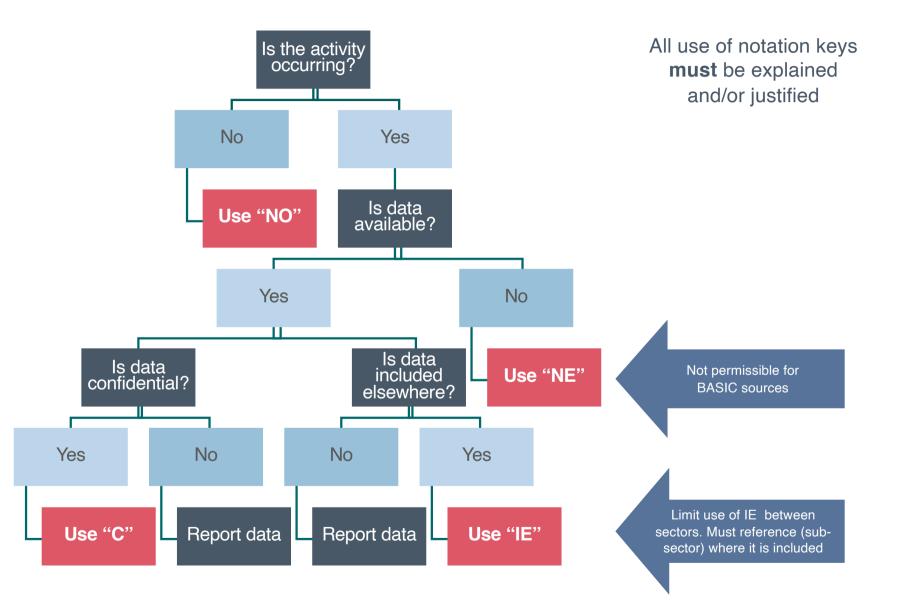
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Number of electric rickshaws	?	?	350	400	450	550	650	750	?	?

Step 2: Establish trends

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Number of electric rickshaws	?	?	350	400	450	550	650	750	?	?
Establish trends			-50	-50	-50	+100	+100	+100		

Step 3: Apply trends

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Number of electric rickshaws	250	300	350	400	450	550	650	750	850	950
			-	-	-	-	-	-		
Establish trends			-50	-50	-50	+100	+100	+100		
		-	-	-		- ,		-		-
Apply trends	-50	-50							+100	+100


Module B Calculating GHG emissions

04 Notating keys

Notation keys

Notation key		Description	Example	
NO	Not occurring	An activity or process does not occur or exist within the city	I.7.1 does not occur. No coal-related activities within the city boundary.II.2.2 does not occur. Number of electric vehicles is negligible compared to total vehicle fleet (0.01% of sales)	
IE	Included elsewhere	Emissions are estimated and presented in another category	II.5.1 is reported in II.1.1. Fuel sales approach does not allow for disaggregation.III.1.2 is reported in I Stationary. Landfill gas is captured and burned as an energy source.	
NE	Not estimated	Emissions occur but have not been estimated or reported	III.4.3 has not been estimated. Activity not required for BASIC inventory.V.1 has not been estimated. No livestock data available	
С	Confidential	Emissions occur but data cannot be disclosed; information is confidential	Activity data for IV.1 is confidential. Data cannot be aggregated to provide confidentiality II.5.1 is confidential. Military base within city boundary	

Notation keys

Insignificant sources

The notation key "NO" (not occurring) may also be used for insignificant sources:

- An emission source can be considered insignificant if the size of emissions is smaller than any other subsector that shall be reported.
- In addition, the combined emissions from all sources that are considered insignificant should not exceed 5% of total emissions that shall be reported.
- For example, if all the emissions sources that shall be reported amount to one million tonnes of CO2e, the total emissions of all insignificant sources cannot exceed 5% of that, i.e. 50,000 tonnes of CO2e. Local governments need to make a crude estimate of such emissions in order to determine if it is insignificant.

Exercise: Notation keys

	Activity	Notation key
III.1	None of the city's waste is sent to landfill	NO – not occurring
II.2.2	The number of electric vehicles is very low	NO – not occurring
V.1	Emissions from land are too difficult to calculate	NE – not estimated
I.8	Fugitive emissions are too difficult to calculate	-
I.2.2	Electricity use in commercial buildings cannot be disaggregated from data for residential buildings	IE – Included elsewhere
II.4.1	The only airport in the city is a military airport. They do not allow their activity data to be disclosed.	C - Confidential
II.5.1	Off-road transportation is included in on-road data	IE – Included elsewhere

Module B Calculating GHG emissions

Managing data quality

05

Evaluating data quality

When assessing data quality, of activity data and emission factors, it is important to consider the extent to which the data reflects:

- The geographic location of the activity
- Time or age of the activity
- Technologies used
- Assessment boundary and emission source
- Reliability of data source

Rating	Activity data	Emission factor	
High	Detailed activity data	Specific emission factors	
Medium	Modeled activity data using robust assumptions	More general emission factors	
Low	Highly-modeled or uncertain activity data	Default emission factors	

Exercise: Data quality assessments

Emissions source	Data quality
National average fuel use per household	Low
Quantity of solid waste weighed at a transfer station	High
CH_4 recovered from landfill based on system design	Medium
National average solid waste generated per person	Low
National statistics agency data on power generation	High
Number of buses based on published travel schedule	Medium
Number of buses based on traffic count over 2 days	Low
Metered office energy use, disaggregated by tariff	High

Module B Calculating GHG emissions

Reviewing an inventory

06

Becoming a reviewer

Workbook

GTALCC GHG Accounting - Participant handbook

Exercises		
Module B	Calculating GHG emissions	
	Reviewing an inventory	-
Module C	Stationary energy	
Module D	Transportation	
Module E	Waste	
Module F	IPPU and AFOLU	

Tables		
Table 1	GHG emission sources	
Table 2	Fuel types	
Table 3	GPC	
Table 4	Action plan	

	Reference
GPC	
GWP	
Notation keys	
Checklist	

Workbook

Reviewing an inventory

1. Review the inventory below (boundary information and GHG emissions) and identify the ten mistakes

City information

Boundary	Information
Name of city	Pangea
Country	Tethys
Inventory year (if not calendar year, please specify the full 12-month period, e.g. 01 April 2014 - 31 March 2015)	01 January 2014 - 31 October 2014
Geographic boundary (select from list of values)	Administrative boundary of a local government
Land area (km2) within city boundary	2.455
Resident population within city boundary	3.837.414
GDP (US\$) of economic activity within city boundary	17.454.000.000

Inventory information

Boundary	Information
GPC reporting level	BASIC
Greenhouse gases included in inventory	CO2, N2O
Global Warming Potential (select IPCC Assessment Report)	IPCC Second Assessment Report (1995) and IPCC Fourth Assessment Report (2007)

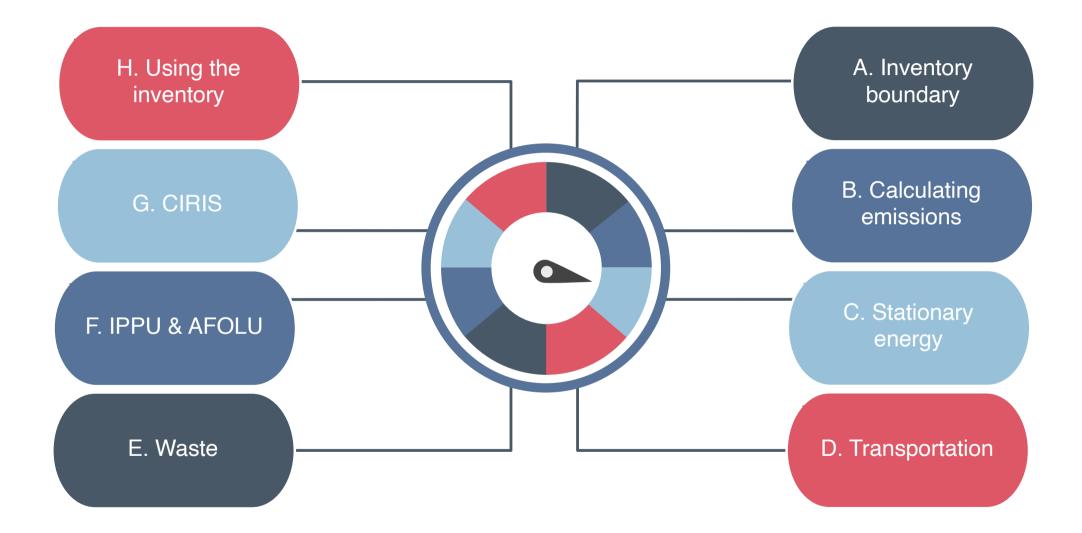
Exercise: Reviewing an inventory

City A has submitted a BASIC inventory. You have been asked to review the inventory to make sure that it is aligned with the requirements of the GPC.

In groups, review the inventory report for City A. It contains ten (10) mistakes. You have 25 minutes to identify them all, paying careful attention to the following:

- Is all the required information reported?
- Has the inventory boundary been properly defined?
- Are all BASIC sources included?
- Have notation keys been used correctly?
- Does the information look accurate?

Answers: Reviewing and inventory


		Error
1	Inventory boundary	Inventory year does not cover 12 months
2	Inventory boundary	No CH ₄ included
3	Inventory boundary	Two IPCC assessment reports selected
4	Stationary: 1.8	Notation key NE used for a BASIC source
5	Stationary: 1.3	Scope 2 emissions too large
6	Transportation: II.5	Scope 1 emissions left blank
7	Transportation: II.2	Notation key IE used for Scope 2 without reference
8	Waste: III.4	Notation key NO used for Scope 1 & 3 emissions
9	BASIC total: II.4	BASIC total for aviation includes BASIC+ emissions
10	BASIC total: overall	Territorial emissions included in BASIC total

03 SUMMARY

Module B: Calculating GHG emissions

Module B: Calculating GHG emissions

The end

Next time: Stationary energy